Cargando…
MSstats Version 4.0: Statistical Analyses of Quantitative Mass Spectrometry-Based Proteomic Experiments with Chromatography-Based Quantification at Scale
[Image: see text] The MSstats R-Bioconductor family of packages is widely used for statistical analyses of quantitative bottom-up mass spectrometry-based proteomic experiments to detect differentially abundant proteins. It is applicable to a variety of experimental designs and data acquisition strat...
Autores principales: | Kohler, Devon, Staniak, Mateusz, Tsai, Tsung-Heng, Huang, Ting, Shulman, Nicholas, Bernhardt, Oliver M., MacLean, Brendan X., Nesvizhskii, Alexey I., Reiter, Lukas, Sabido, Eduard, Choi, Meena, Vitek, Olga |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10629259/ https://www.ncbi.nlm.nih.gov/pubmed/37018319 http://dx.doi.org/10.1021/acs.jproteome.2c00834 |
Ejemplares similares
-
MSstatsPTM: Statistical Relative Quantification of Posttranslational Modifications in Bottom-Up Mass Spectrometry-Based Proteomics
por: Kohler, Devon, et al.
Publicado: (2022) -
MSstatsTMT: Statistical Detection of Differentially Abundant Proteins in Experiments with Isobaric Labeling and Multiple Mixtures
por: Huang, Ting, et al.
Publicado: (2020) -
MassIVE.quant: a community resource of quantitative mass spectrometry-based proteomics datasets
por: Choi, Meena, et al.
Publicado: (2020) -
A multi-center study benchmarks software tools for label-free proteome quantification
por: Navarro, Pedro, et al.
Publicado: (2016) -
A statistical model-building perspective to identification of MS/MS spectra with PeptideProphet
por: Ma, Kelvin, et al.
Publicado: (2012)