Cargando…
Evaluation of input data modality choices on functional gene embeddings
Functional gene embeddings, numerical vectors capturing gene function, provide a promising way to integrate functional gene information into machine learning models. These embeddings are learnt by applying self-supervised machine-learning algorithms on various data types including quantitative omics...
Autores principales: | Brechtmann, Felix, Bechtler, Thibault, Londhe, Shubhankar, Mertes, Christian, Gagneur, Julien |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10629286/ https://www.ncbi.nlm.nih.gov/pubmed/37942285 http://dx.doi.org/10.1093/nargab/lqad095 |
Ejemplares similares
-
Helper-embedded satellites from an integrase clade that repeatedly targets prophage late genes
por: Tommasini, Dario, et al.
Publicado: (2023) -
Contrastive learning on protein embeddings enlightens midnight zone
por: Heinzinger, Michael, et al.
Publicado: (2022) -
Superior protein thermophilicity prediction with protein language model embeddings
por: Haselbeck, Florian, et al.
Publicado: (2023) -
Evaluating the role of phage-shock protein A in Burkholderia pseudomallei
por: Southern, Stephanie J., et al.
Publicado: (2015) -
The role of transcript regions and amino acid choice in nucleosome positioning
por: Yadav, Manish, et al.
Publicado: (2023)