Cargando…
L-methionine protects against nephrotoxicity induced by methotrexate through modulation of redox status and inflammation
Objective: Methotrexate (MTX) is a drug used in the treatment of cancer and autoimmune disorders; however, its clinical use is limited because of serious side effects including renal toxicity. This study aimed to investigate the protective effect of Lmethionine (L-Met) on MTX toxicity in the kidneys...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10629423/ https://www.ncbi.nlm.nih.gov/pubmed/37931136 http://dx.doi.org/10.1080/13510002.2023.2270886 |
Sumario: | Objective: Methotrexate (MTX) is a drug used in the treatment of cancer and autoimmune disorders; however, its clinical use is limited because of serious side effects including renal toxicity. This study aimed to investigate the protective effect of Lmethionine (L-Met) on MTX toxicity in the kidneys of rats. Methods: Thirty male rats were divided equally into five groups: control (saline), Met400 (400 mg/kg L-Met), MTX (20 mg/kg MTX), MTX-Met300 (300 mg/kg L-Met and 20 mg/kg MTX), and MTX-Met400 (400 mg/kg L-Met and 20 mg/kg MTX). Rats were euthanized one day after the last dose administration (day 16) and serum and renal tissue samples were collected. Renal function and injury indices, oxidative stress/antioxidant indices and proinflammatory cytokines were evaluated. Results: The results showed that L-Met could effectively counteract the nephrotoxic effects of MTX, in a dose-related manner, by improving most of the tested parameters. Furthermore, the higher dose of L-Met was able to restore several parameters to normal levels. In addition, investigation of MTX-induced hematological changes revealed a corrective potential of L-Met. Conclusion: L-Met can be an effective adjuvant therapy to modulate renal toxicity associated with MTX because of its antioxidant and antiinflammatory effects. |
---|