Cargando…
Dynamic Nomogram for Predicting the Risk of Perioperative Neurocognitive Disorders in Adults
BACKGROUND: Simple and rapid tools for screening high-risk patients for perioperative neurocognitive disorders (PNDs) are urgently needed to improve patient outcomes. We developed an online tool with machine-learning algorithms using routine variables based on multicenter data. METHODS: The entire d...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Lippincott Williams & Wilkins
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10629609/ https://www.ncbi.nlm.nih.gov/pubmed/37973132 http://dx.doi.org/10.1213/ANE.0000000000006746 |
_version_ | 1785131992917999616 |
---|---|
author | Song, Ai-lin Li, Yu-jie Liang, Hao Sun, Yi-zhu Shu, Xin Huang, Jia-hao Yang, Zhi-yong He, Wen-quan Zhao, Lei Zhu, Tao Zhong, Kun-hua Chen, Yu-wen Lu, Kai-zhi Yi, Bin |
author_facet | Song, Ai-lin Li, Yu-jie Liang, Hao Sun, Yi-zhu Shu, Xin Huang, Jia-hao Yang, Zhi-yong He, Wen-quan Zhao, Lei Zhu, Tao Zhong, Kun-hua Chen, Yu-wen Lu, Kai-zhi Yi, Bin |
author_sort | Song, Ai-lin |
collection | PubMed |
description | BACKGROUND: Simple and rapid tools for screening high-risk patients for perioperative neurocognitive disorders (PNDs) are urgently needed to improve patient outcomes. We developed an online tool with machine-learning algorithms using routine variables based on multicenter data. METHODS: The entire dataset was composed of 49,768 surgical patients from 3 representative academic hospitals in China. Surgical patients older than 45 years, those undergoing general anesthesia, and those without a history of PND were enrolled. When the patient’s discharge diagnosis was PND, the patient was in the PND group. Patients in the non-PND group were randomly extracted from the big data platform according to the surgical type, age, and source of data in the PND group with a ratio of 3:1. After data preprocessing and feature selection, general linear model (GLM), artificial neural network (ANN), and naive Bayes (NB) were used for model development and evaluation. Model performance was evaluated by the area under the receiver operating characteristic curve (ROCAUC), the area under the precision-recall curve (PRAUC), the Brier score, the index of prediction accuracy (IPA), sensitivity, specificity, etc. The model was also externally validated on the multiparameter intelligent monitoring in intensive care (MIMIC) Ⅳ database. Afterward, we developed an online visualization tool to preoperatively predict patients’ risk of developing PND based on the models with the best performance. RESULTS: A total of 1051 patients (242 PND and 809 non-PND) and 2884 patients (6.2% patients with PND) were analyzed on multicenter data (model development, test [internal validation], external validation-1) and MIMIC Ⅳ dataset (external validation-2). The model performance based on GLM was much better than that based on ANN and NB. The best-performing GLM model on validation-1 dataset achieved ROCAUC (0.874; 95% confidence interval [CI], 0.833–0.915), PRAUC (0.685; 95% CI, 0.584–0.786), sensitivity (72.6%; 95% CI, 61.4%–81.5%), specificity (84.4%; 95% CI, 79.3%–88.4%), Brier score (0.131), and IPA (44.7%), and of which the ROCAUC (0.761, 95% CI, 0.712–0.809), the PRAUC (0.475, 95% CI, 0.370–0.581), Brier score (0.053), and IPA (76.8%) on validation-2 dataset. Afterward, we developed an online tool (https://pnd-predictive-model-dynnom.shinyapps.io/ DynNomapp/) with 10 routine variables for preoperatively screening high-risk patients. CONCLUSIONS: We developed a simple and rapid online tool to preoperatively screen patients’ risk of PND using GLM based on multicenter data, which may help medical staff’s decision-making regarding perioperative management strategies to improve patient outcomes. |
format | Online Article Text |
id | pubmed-10629609 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Lippincott Williams & Wilkins |
record_format | MEDLINE/PubMed |
spelling | pubmed-106296092023-11-08 Dynamic Nomogram for Predicting the Risk of Perioperative Neurocognitive Disorders in Adults Song, Ai-lin Li, Yu-jie Liang, Hao Sun, Yi-zhu Shu, Xin Huang, Jia-hao Yang, Zhi-yong He, Wen-quan Zhao, Lei Zhu, Tao Zhong, Kun-hua Chen, Yu-wen Lu, Kai-zhi Yi, Bin Anesth Analg 8 BACKGROUND: Simple and rapid tools for screening high-risk patients for perioperative neurocognitive disorders (PNDs) are urgently needed to improve patient outcomes. We developed an online tool with machine-learning algorithms using routine variables based on multicenter data. METHODS: The entire dataset was composed of 49,768 surgical patients from 3 representative academic hospitals in China. Surgical patients older than 45 years, those undergoing general anesthesia, and those without a history of PND were enrolled. When the patient’s discharge diagnosis was PND, the patient was in the PND group. Patients in the non-PND group were randomly extracted from the big data platform according to the surgical type, age, and source of data in the PND group with a ratio of 3:1. After data preprocessing and feature selection, general linear model (GLM), artificial neural network (ANN), and naive Bayes (NB) were used for model development and evaluation. Model performance was evaluated by the area under the receiver operating characteristic curve (ROCAUC), the area under the precision-recall curve (PRAUC), the Brier score, the index of prediction accuracy (IPA), sensitivity, specificity, etc. The model was also externally validated on the multiparameter intelligent monitoring in intensive care (MIMIC) Ⅳ database. Afterward, we developed an online visualization tool to preoperatively predict patients’ risk of developing PND based on the models with the best performance. RESULTS: A total of 1051 patients (242 PND and 809 non-PND) and 2884 patients (6.2% patients with PND) were analyzed on multicenter data (model development, test [internal validation], external validation-1) and MIMIC Ⅳ dataset (external validation-2). The model performance based on GLM was much better than that based on ANN and NB. The best-performing GLM model on validation-1 dataset achieved ROCAUC (0.874; 95% confidence interval [CI], 0.833–0.915), PRAUC (0.685; 95% CI, 0.584–0.786), sensitivity (72.6%; 95% CI, 61.4%–81.5%), specificity (84.4%; 95% CI, 79.3%–88.4%), Brier score (0.131), and IPA (44.7%), and of which the ROCAUC (0.761, 95% CI, 0.712–0.809), the PRAUC (0.475, 95% CI, 0.370–0.581), Brier score (0.053), and IPA (76.8%) on validation-2 dataset. Afterward, we developed an online tool (https://pnd-predictive-model-dynnom.shinyapps.io/ DynNomapp/) with 10 routine variables for preoperatively screening high-risk patients. CONCLUSIONS: We developed a simple and rapid online tool to preoperatively screen patients’ risk of PND using GLM based on multicenter data, which may help medical staff’s decision-making regarding perioperative management strategies to improve patient outcomes. Lippincott Williams & Wilkins 2023-10-18 2023-12 /pmc/articles/PMC10629609/ /pubmed/37973132 http://dx.doi.org/10.1213/ANE.0000000000006746 Text en Copyright © 2023 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the International Anesthesia Research Society. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND (https://creativecommons.org/licenses/by-nc-nd/4.0/) ), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal. |
spellingShingle | 8 Song, Ai-lin Li, Yu-jie Liang, Hao Sun, Yi-zhu Shu, Xin Huang, Jia-hao Yang, Zhi-yong He, Wen-quan Zhao, Lei Zhu, Tao Zhong, Kun-hua Chen, Yu-wen Lu, Kai-zhi Yi, Bin Dynamic Nomogram for Predicting the Risk of Perioperative Neurocognitive Disorders in Adults |
title | Dynamic Nomogram for Predicting the Risk of Perioperative Neurocognitive Disorders in Adults |
title_full | Dynamic Nomogram for Predicting the Risk of Perioperative Neurocognitive Disorders in Adults |
title_fullStr | Dynamic Nomogram for Predicting the Risk of Perioperative Neurocognitive Disorders in Adults |
title_full_unstemmed | Dynamic Nomogram for Predicting the Risk of Perioperative Neurocognitive Disorders in Adults |
title_short | Dynamic Nomogram for Predicting the Risk of Perioperative Neurocognitive Disorders in Adults |
title_sort | dynamic nomogram for predicting the risk of perioperative neurocognitive disorders in adults |
topic | 8 |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10629609/ https://www.ncbi.nlm.nih.gov/pubmed/37973132 http://dx.doi.org/10.1213/ANE.0000000000006746 |
work_keys_str_mv | AT songailin dynamicnomogramforpredictingtheriskofperioperativeneurocognitivedisordersinadults AT liyujie dynamicnomogramforpredictingtheriskofperioperativeneurocognitivedisordersinadults AT lianghao dynamicnomogramforpredictingtheriskofperioperativeneurocognitivedisordersinadults AT sunyizhu dynamicnomogramforpredictingtheriskofperioperativeneurocognitivedisordersinadults AT shuxin dynamicnomogramforpredictingtheriskofperioperativeneurocognitivedisordersinadults AT huangjiahao dynamicnomogramforpredictingtheriskofperioperativeneurocognitivedisordersinadults AT yangzhiyong dynamicnomogramforpredictingtheriskofperioperativeneurocognitivedisordersinadults AT hewenquan dynamicnomogramforpredictingtheriskofperioperativeneurocognitivedisordersinadults AT zhaolei dynamicnomogramforpredictingtheriskofperioperativeneurocognitivedisordersinadults AT zhutao dynamicnomogramforpredictingtheriskofperioperativeneurocognitivedisordersinadults AT zhongkunhua dynamicnomogramforpredictingtheriskofperioperativeneurocognitivedisordersinadults AT chenyuwen dynamicnomogramforpredictingtheriskofperioperativeneurocognitivedisordersinadults AT lukaizhi dynamicnomogramforpredictingtheriskofperioperativeneurocognitivedisordersinadults AT yibin dynamicnomogramforpredictingtheriskofperioperativeneurocognitivedisordersinadults |