Cargando…
Pluripotent stem cell-derived neural progenitor cells can be used to model effects of IL-6 on human neurodevelopment
Maternal immune activation (MIA) increases the risks for neurodevelopmental disorders in offspring through inflammatory cytokines, including interleukin-6 (IL-6). We therefore aimed to establish a human two-dimensional (2D) in vitro neural model to investigate the effects of IL-6 exposure on neurode...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Company of Biologists Ltd
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10629675/ https://www.ncbi.nlm.nih.gov/pubmed/37921007 http://dx.doi.org/10.1242/dmm.050306 |
_version_ | 1785132007902150656 |
---|---|
author | Sarieva, Kseniia Hildebrand, Felix Kagermeier, Theresa Yentür, Zeynep Becker, Katharina Mayer, Simone |
author_facet | Sarieva, Kseniia Hildebrand, Felix Kagermeier, Theresa Yentür, Zeynep Becker, Katharina Mayer, Simone |
author_sort | Sarieva, Kseniia |
collection | PubMed |
description | Maternal immune activation (MIA) increases the risks for neurodevelopmental disorders in offspring through inflammatory cytokines, including interleukin-6 (IL-6). We therefore aimed to establish a human two-dimensional (2D) in vitro neural model to investigate the effects of IL-6 exposure on neurodevelopment. IL-6 signal transduction requires two receptors: interleukin-6 signal transducer (IL6ST) and interleukin-6 receptor (IL6R). Prenatally, neural cells lack IL6R, and hence cannot elicit cis IL-6 signaling, but IL6R can be provided by microglia in trans. We demonstrate here that an immortalized human neural progenitor cell (NPC) line, ReNCell CX, expresses IL6ST and elicits both cis and trans IL-6 signaling, limiting its use as a model of MIA. In contrast, induced pluripotent stem cell (iPSC)-derived NPCs only activate the IL-6 cascade in trans. Activation of the trans IL-6 cascade did not result in increased proliferation of iPSC-derived NPCs or ReNCell CX, as has been demonstrated in animal models. iPSC-derived NPCs upregulated NR2F1 expression in response to IL-6 signaling in line with analogous experiments in organoids. Thus, iPSC-derived NPCs can be used to model gene expression changes in response to MIA in 2D cultures. |
format | Online Article Text |
id | pubmed-10629675 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | The Company of Biologists Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-106296752023-11-08 Pluripotent stem cell-derived neural progenitor cells can be used to model effects of IL-6 on human neurodevelopment Sarieva, Kseniia Hildebrand, Felix Kagermeier, Theresa Yentür, Zeynep Becker, Katharina Mayer, Simone Dis Model Mech Resource Article Maternal immune activation (MIA) increases the risks for neurodevelopmental disorders in offspring through inflammatory cytokines, including interleukin-6 (IL-6). We therefore aimed to establish a human two-dimensional (2D) in vitro neural model to investigate the effects of IL-6 exposure on neurodevelopment. IL-6 signal transduction requires two receptors: interleukin-6 signal transducer (IL6ST) and interleukin-6 receptor (IL6R). Prenatally, neural cells lack IL6R, and hence cannot elicit cis IL-6 signaling, but IL6R can be provided by microglia in trans. We demonstrate here that an immortalized human neural progenitor cell (NPC) line, ReNCell CX, expresses IL6ST and elicits both cis and trans IL-6 signaling, limiting its use as a model of MIA. In contrast, induced pluripotent stem cell (iPSC)-derived NPCs only activate the IL-6 cascade in trans. Activation of the trans IL-6 cascade did not result in increased proliferation of iPSC-derived NPCs or ReNCell CX, as has been demonstrated in animal models. iPSC-derived NPCs upregulated NR2F1 expression in response to IL-6 signaling in line with analogous experiments in organoids. Thus, iPSC-derived NPCs can be used to model gene expression changes in response to MIA in 2D cultures. The Company of Biologists Ltd 2023-11-03 /pmc/articles/PMC10629675/ /pubmed/37921007 http://dx.doi.org/10.1242/dmm.050306 Text en © 2023. Published by The Company of Biologists Ltd https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0 (https://creativecommons.org/licenses/by/4.0/) ), which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed. |
spellingShingle | Resource Article Sarieva, Kseniia Hildebrand, Felix Kagermeier, Theresa Yentür, Zeynep Becker, Katharina Mayer, Simone Pluripotent stem cell-derived neural progenitor cells can be used to model effects of IL-6 on human neurodevelopment |
title | Pluripotent stem cell-derived neural progenitor cells can be used to model effects of IL-6 on human neurodevelopment |
title_full | Pluripotent stem cell-derived neural progenitor cells can be used to model effects of IL-6 on human neurodevelopment |
title_fullStr | Pluripotent stem cell-derived neural progenitor cells can be used to model effects of IL-6 on human neurodevelopment |
title_full_unstemmed | Pluripotent stem cell-derived neural progenitor cells can be used to model effects of IL-6 on human neurodevelopment |
title_short | Pluripotent stem cell-derived neural progenitor cells can be used to model effects of IL-6 on human neurodevelopment |
title_sort | pluripotent stem cell-derived neural progenitor cells can be used to model effects of il-6 on human neurodevelopment |
topic | Resource Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10629675/ https://www.ncbi.nlm.nih.gov/pubmed/37921007 http://dx.doi.org/10.1242/dmm.050306 |
work_keys_str_mv | AT sarievakseniia pluripotentstemcellderivedneuralprogenitorcellscanbeusedtomodeleffectsofil6onhumanneurodevelopment AT hildebrandfelix pluripotentstemcellderivedneuralprogenitorcellscanbeusedtomodeleffectsofil6onhumanneurodevelopment AT kagermeiertheresa pluripotentstemcellderivedneuralprogenitorcellscanbeusedtomodeleffectsofil6onhumanneurodevelopment AT yenturzeynep pluripotentstemcellderivedneuralprogenitorcellscanbeusedtomodeleffectsofil6onhumanneurodevelopment AT beckerkatharina pluripotentstemcellderivedneuralprogenitorcellscanbeusedtomodeleffectsofil6onhumanneurodevelopment AT mayersimone pluripotentstemcellderivedneuralprogenitorcellscanbeusedtomodeleffectsofil6onhumanneurodevelopment |