Cargando…
P19 a Parthenin Analog Induces Cell Lineage Dependent Apoptotic and Immunomodulatory Signaling in Acute Lymphoid Leukemia Cells
Leukemia is a type of cancer that affects the blood and bone marrow. Acute lymphoid leukaemia, also known as ALL, is regarded as one of the deadliest forms of cancer. Due to the rapid increase in various cancer cases and the development of resistance in cancer cells, it is necessary to identify nove...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Babol University of Medical Sciences
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10629723/ https://www.ncbi.nlm.nih.gov/pubmed/37942260 http://dx.doi.org/10.22088/IJMCM.BUMS.12.1.1 |
Sumario: | Leukemia is a type of cancer that affects the blood and bone marrow. Acute lymphoid leukaemia, also known as ALL, is regarded as one of the deadliest forms of cancer. Due to the rapid increase in various cancer cases and the development of resistance in cancer cells, it is necessary to identify novel lead molecules with more potent anticancer properties. There is a growing interest in using herbal products/analogs as multi-component agents (as anticancer agents and immunomodulators) for cancer treatment. In the present investigation, an attempt has been made to explore the anticancer and immunomodulatory activity of P19, an analog of parthenin in ALL. P19 was reported to exhibit anticancer efficacy by triggering apoptotic signaling events in human leukaemia HL-60 cells by significant NO production. In contrast to this finding, ROS and NO were not required for P19-mediated apoptosis in Raji cells. The mechanism of action of P19 was observed to be cancer cell lineage dependent. P19 demonstrated very effective anticancer properties against ALL (IC(50) 3µM). Molecular investigations revealed that P19 induced mitochondrion mediated apoptosis by Bax localization to mitochondria and enhanced cytosolic calcium in the cytoplasm. Further activation of the caspase 3, caspase 8 and PARP cleavage suggested the involvement of the caspase-mediated apoptosis. Anti-proliferative activity revealed the telomerase inhibition and cell cycle arrest in G0/G1 phase after P19 treatment. Immunomodulatory effects of the P19 revealed the enhanced INFɣ and NO production in Jurkat and THP cells. Owing to its antiproliferative and immunomodulatory potential against leukemia cells P19 can further be explored as effective therapeutics against leukemia |
---|