Cargando…

Hunting down zinc(II)-binding sites in proteins with distance matrices

MOTIVATION: In recent years, high-throughput sequencing technologies have made available the genome sequences of a huge variety of organisms. However, the functional annotation of the encoded proteins often still relies on low-throughput and costly experimental studies. Bioinformatics approaches off...

Descripción completa

Detalles Bibliográficos
Autores principales: Laveglia, Vincenzo, Bazayeva, Milana, Andreini, Claudia, Rosato, Antonio
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10630175/
https://www.ncbi.nlm.nih.gov/pubmed/37878807
http://dx.doi.org/10.1093/bioinformatics/btad653
Descripción
Sumario:MOTIVATION: In recent years, high-throughput sequencing technologies have made available the genome sequences of a huge variety of organisms. However, the functional annotation of the encoded proteins often still relies on low-throughput and costly experimental studies. Bioinformatics approaches offer a promising alternative to accelerate this process. In this work, we focus on the binding of zinc(II) ions, which is needed for 5%–10% of any organism’s proteins to achieve their physiologically relevant form. RESULTS: To implement a predictor of zinc(II)-binding sites in the 3D structures of proteins, we used a neural network, followed by a filter of the network output against the local structure of all known sites. The latter was implemented as a function comparing the distance matrices of the Cα and Cβ atoms of the sites. We called the resulting tool Master of Metals (MOM). The structural models for the entire proteome of an organism generated by AlphaFold can be used as input to our tool in order to achieve annotation at the whole organism level within a few hours. To demonstrate this, we applied MOM to the yeast proteome, obtaining a precision of about 76%, based on data for homologous proteins. AVAILABILITY AND IMPLEMENTATION: Master of Metals has been implemented in Python and is available at https://github.com/cerm-cirmmp/Master-of-metals.