Cargando…
Deep learning performance for detection and classification of microcalcifications on mammography
BACKGROUND: Breast cancer screening through mammography is crucial for early detection, yet the demand for mammography services surpasses the capacity of radiologists. Artificial intelligence (AI) can assist in evaluating microcalcifications on mammography. We developed and tested an AI model for lo...
Autores principales: | Pesapane, Filippo, Trentin, Chiara, Ferrari, Federica, Signorelli, Giulia, Tantrige, Priyan, Montesano, Marta, Cicala, Crispino, Virgoli, Roberto, D’Acquisto, Silvia, Nicosia, Luca, Origgi, Daniela, Cassano, Enrico |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Vienna
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10630180/ https://www.ncbi.nlm.nih.gov/pubmed/37934382 http://dx.doi.org/10.1186/s41747-023-00384-3 |
Ejemplares similares
-
Contrast-Enhanced Spectral Mammography in the Evaluation of Breast Microcalcifications: Controversies and Diagnostic Management
por: Nicosia, Luca, et al.
Publicado: (2023) -
How Radiomics Can Improve Breast Cancer Diagnosis and Treatment
por: Pesapane, Filippo, et al.
Publicado: (2023) -
Breast Digital Tomosynthesis versus Contrast-Enhanced Mammography: Comparison of Diagnostic Application and Radiation Dose in a Screening Setting
por: Nicosia, Luca, et al.
Publicado: (2023) -
Advancements in Standardizing Radiological Reports: A Comprehensive Review
por: Pesapane, Filippo, et al.
Publicado: (2023) -
A Score to Predict the Malignancy of a Breast Lesion Based on Different Contrast Enhancement Patterns in Contrast-Enhanced Spectral Mammography
por: Nicosia, Luca, et al.
Publicado: (2022)