Cargando…

Six-pack holography for dynamic profiling of thick and extended objects by simultaneous three-wavelength phase unwrapping with doubled field of view

Dynamic holographic profiling of thick samples is limited due to the reduced field of view (FOV) of off-axis holography. We present an improved six-pack holography system for the simultaneous acquisition of six complex wavefronts in a single camera exposure from two fields of view (FOVs) and three w...

Descripción completa

Detalles Bibliográficos
Autores principales: Mirsky, Simcha K., Shaked, Natan T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10630357/
https://www.ncbi.nlm.nih.gov/pubmed/37935758
http://dx.doi.org/10.1038/s41598-023-45237-6
Descripción
Sumario:Dynamic holographic profiling of thick samples is limited due to the reduced field of view (FOV) of off-axis holography. We present an improved six-pack holography system for the simultaneous acquisition of six complex wavefronts in a single camera exposure from two fields of view (FOVs) and three wavelengths, for quantitative phase unwrapping of thick and extended transparent objects. By dynamically generating three synthetic wavelength quantitative phase maps for each of the two FOVs, with the longest wavelength being 6207 nm, hierarchical phase unwrapping can be used to reduce noise while maintaining the improvements in the 2π phase ambiguity due to the longer synthetic wavelength. The system was tested on a 7 μm tall PDMS microchannel and is shown to produce quantitative phase maps with 96% accuracy, while the hierarchical unwrapping reduces noise by 93%. A monolayer of live onion epidermal tissue was also successfully scanned, demonstrating the potential of the system to dynamically decrease scanning time of optically thick and extended samples.