Cargando…

Prediction on X-ray output of free electron laser based on artificial neural networks

Knowledge of x-ray free electron lasers’ (XFELs) pulse characteristics delivered to a sample is crucial for ensuring high-quality x-rays for scientific experiments. XFELs’ self-amplified spontaneous emission process causes spatial and spectral variations in x-ray pulses entering a sample, which lead...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Kenan, Zhou, Guanqun, Liu, Yanwei, Wu, Juhao, Lin, Ming-fu, Cheng, Xinxin, Lutman, Alberto A., Seaberg, Matthew, Smith, Howard, Kakhandiki, Pranav A., Sakdinawat, Anne
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10630459/
https://www.ncbi.nlm.nih.gov/pubmed/37935675
http://dx.doi.org/10.1038/s41467-023-42573-z
_version_ 1785132154039042048
author Li, Kenan
Zhou, Guanqun
Liu, Yanwei
Wu, Juhao
Lin, Ming-fu
Cheng, Xinxin
Lutman, Alberto A.
Seaberg, Matthew
Smith, Howard
Kakhandiki, Pranav A.
Sakdinawat, Anne
author_facet Li, Kenan
Zhou, Guanqun
Liu, Yanwei
Wu, Juhao
Lin, Ming-fu
Cheng, Xinxin
Lutman, Alberto A.
Seaberg, Matthew
Smith, Howard
Kakhandiki, Pranav A.
Sakdinawat, Anne
author_sort Li, Kenan
collection PubMed
description Knowledge of x-ray free electron lasers’ (XFELs) pulse characteristics delivered to a sample is crucial for ensuring high-quality x-rays for scientific experiments. XFELs’ self-amplified spontaneous emission process causes spatial and spectral variations in x-ray pulses entering a sample, which leads to measurement uncertainties for experiments relying on multiple XFEL pulses. Accurate in-situ measurements of x-ray wavefront and energy spectrum incident upon a sample poses challenges. Here we address this by developing a virtual diagnostics framework using an artificial neural network (ANN) to predict x-ray photon beam properties from electron beam properties. We recorded XFEL electron parameters while adjusting the accelerator’s configurations and measured the resulting x-ray wavefront and energy spectrum shot-to-shot. Training the ANN with this data enables effective prediction of single-shot or average x-ray beam output based on XFEL undulator and electron parameters. This demonstrates the potential of utilizing ANNs for virtual diagnostics linking XFEL electron and photon beam properties.
format Online
Article
Text
id pubmed-10630459
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-106304592023-11-08 Prediction on X-ray output of free electron laser based on artificial neural networks Li, Kenan Zhou, Guanqun Liu, Yanwei Wu, Juhao Lin, Ming-fu Cheng, Xinxin Lutman, Alberto A. Seaberg, Matthew Smith, Howard Kakhandiki, Pranav A. Sakdinawat, Anne Nat Commun Article Knowledge of x-ray free electron lasers’ (XFELs) pulse characteristics delivered to a sample is crucial for ensuring high-quality x-rays for scientific experiments. XFELs’ self-amplified spontaneous emission process causes spatial and spectral variations in x-ray pulses entering a sample, which leads to measurement uncertainties for experiments relying on multiple XFEL pulses. Accurate in-situ measurements of x-ray wavefront and energy spectrum incident upon a sample poses challenges. Here we address this by developing a virtual diagnostics framework using an artificial neural network (ANN) to predict x-ray photon beam properties from electron beam properties. We recorded XFEL electron parameters while adjusting the accelerator’s configurations and measured the resulting x-ray wavefront and energy spectrum shot-to-shot. Training the ANN with this data enables effective prediction of single-shot or average x-ray beam output based on XFEL undulator and electron parameters. This demonstrates the potential of utilizing ANNs for virtual diagnostics linking XFEL electron and photon beam properties. Nature Publishing Group UK 2023-11-08 /pmc/articles/PMC10630459/ /pubmed/37935675 http://dx.doi.org/10.1038/s41467-023-42573-z Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Li, Kenan
Zhou, Guanqun
Liu, Yanwei
Wu, Juhao
Lin, Ming-fu
Cheng, Xinxin
Lutman, Alberto A.
Seaberg, Matthew
Smith, Howard
Kakhandiki, Pranav A.
Sakdinawat, Anne
Prediction on X-ray output of free electron laser based on artificial neural networks
title Prediction on X-ray output of free electron laser based on artificial neural networks
title_full Prediction on X-ray output of free electron laser based on artificial neural networks
title_fullStr Prediction on X-ray output of free electron laser based on artificial neural networks
title_full_unstemmed Prediction on X-ray output of free electron laser based on artificial neural networks
title_short Prediction on X-ray output of free electron laser based on artificial neural networks
title_sort prediction on x-ray output of free electron laser based on artificial neural networks
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10630459/
https://www.ncbi.nlm.nih.gov/pubmed/37935675
http://dx.doi.org/10.1038/s41467-023-42573-z
work_keys_str_mv AT likenan predictiononxrayoutputoffreeelectronlaserbasedonartificialneuralnetworks
AT zhouguanqun predictiononxrayoutputoffreeelectronlaserbasedonartificialneuralnetworks
AT liuyanwei predictiononxrayoutputoffreeelectronlaserbasedonartificialneuralnetworks
AT wujuhao predictiononxrayoutputoffreeelectronlaserbasedonartificialneuralnetworks
AT linmingfu predictiononxrayoutputoffreeelectronlaserbasedonartificialneuralnetworks
AT chengxinxin predictiononxrayoutputoffreeelectronlaserbasedonartificialneuralnetworks
AT lutmanalbertoa predictiononxrayoutputoffreeelectronlaserbasedonartificialneuralnetworks
AT seabergmatthew predictiononxrayoutputoffreeelectronlaserbasedonartificialneuralnetworks
AT smithhoward predictiononxrayoutputoffreeelectronlaserbasedonartificialneuralnetworks
AT kakhandikipranava predictiononxrayoutputoffreeelectronlaserbasedonartificialneuralnetworks
AT sakdinawatanne predictiononxrayoutputoffreeelectronlaserbasedonartificialneuralnetworks