Cargando…
Datasets of narrow thermal hysteresis behaviour Ti-Ni-based HT-SMAs and the predicted accumulated local effects
This article refers to data derived from a research article entitled “Prediction of narrow HT-SMA thermal hysteresis behaviour using explainable machine learning” [1]. It is based on the knowledge that alloying Ti-Ni-based shape memory alloys (SMAs) with additional ternary or multicomponent elements...
Autores principales: | Machaka, Ronald, Radingoana, Precious M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10630592/ https://www.ncbi.nlm.nih.gov/pubmed/38020442 http://dx.doi.org/10.1016/j.dib.2023.109654 |
Ejemplares similares
-
Machine learning-based prediction of phases in high-entropy alloys: A data article
por: Machaka, Ronald, et al.
Publicado: (2021) -
The SMAs: Neural Substrate of the Temporal Accumulator?
por: Casini, Laurence, et al.
Publicado: (2011) -
Experiments on deformation behaviour of functionally graded NiTi structures
por: Shariat, Bashir S., et al.
Publicado: (2017) -
Assessing the Impact of a Novel Surgical Algorithm in Rhytidectomy Technique Selection: High SMAS vs SMAS Plication vs SMAS-ectomy
por: Patel, Anooj, et al.
Publicado: (2023) -
Dataset of thermal behaviour and weather data of thermal disinfestation of Sitophilus oryzae in plastic bags using solar heating
por: Fawki, Shams, et al.
Publicado: (2022)