Cargando…
UAV-PDD2023: A benchmark dataset for pavement distress detection based on UAV images
The UAV-PDD2023 dataset consists of pavement distress images captured by unmanned aerial vehicles (UAVs) in China with more than 11,150 instances under two different weather conditions and across varying levels of construction quality. The roads in the dataset consist of highways, provincial roads,...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10630617/ https://www.ncbi.nlm.nih.gov/pubmed/38020429 http://dx.doi.org/10.1016/j.dib.2023.109692 |
_version_ | 1785132188452257792 |
---|---|
author | Yan, Haohui Zhang, Junfei |
author_facet | Yan, Haohui Zhang, Junfei |
author_sort | Yan, Haohui |
collection | PubMed |
description | The UAV-PDD2023 dataset consists of pavement distress images captured by unmanned aerial vehicles (UAVs) in China with more than 11,150 instances under two different weather conditions and across varying levels of construction quality. The roads in the dataset consist of highways, provincial roads, and county roads constructed under different requirements. It contains six typical types of pavement distress instances, including longitudinal cracks, transverse cracks, oblique cracks, alligator cracks, patching, and potholes. The dataset can be used to train deep learning models for automatically detecting and classifying pavement distresses using UAV images. In addition, the dataset can be used as a benchmark to evaluate the performance of different algorithms for solving tasks such as object detection, image classification, etc. The UAV-PDD2023 dataset can be downloaded for free at the URL in this paper. |
format | Online Article Text |
id | pubmed-10630617 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-106306172023-10-15 UAV-PDD2023: A benchmark dataset for pavement distress detection based on UAV images Yan, Haohui Zhang, Junfei Data Brief Data Article The UAV-PDD2023 dataset consists of pavement distress images captured by unmanned aerial vehicles (UAVs) in China with more than 11,150 instances under two different weather conditions and across varying levels of construction quality. The roads in the dataset consist of highways, provincial roads, and county roads constructed under different requirements. It contains six typical types of pavement distress instances, including longitudinal cracks, transverse cracks, oblique cracks, alligator cracks, patching, and potholes. The dataset can be used to train deep learning models for automatically detecting and classifying pavement distresses using UAV images. In addition, the dataset can be used as a benchmark to evaluate the performance of different algorithms for solving tasks such as object detection, image classification, etc. The UAV-PDD2023 dataset can be downloaded for free at the URL in this paper. Elsevier 2023-10-15 /pmc/articles/PMC10630617/ /pubmed/38020429 http://dx.doi.org/10.1016/j.dib.2023.109692 Text en © 2023 The Authors https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Data Article Yan, Haohui Zhang, Junfei UAV-PDD2023: A benchmark dataset for pavement distress detection based on UAV images |
title | UAV-PDD2023: A benchmark dataset for pavement distress detection based on UAV images |
title_full | UAV-PDD2023: A benchmark dataset for pavement distress detection based on UAV images |
title_fullStr | UAV-PDD2023: A benchmark dataset for pavement distress detection based on UAV images |
title_full_unstemmed | UAV-PDD2023: A benchmark dataset for pavement distress detection based on UAV images |
title_short | UAV-PDD2023: A benchmark dataset for pavement distress detection based on UAV images |
title_sort | uav-pdd2023: a benchmark dataset for pavement distress detection based on uav images |
topic | Data Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10630617/ https://www.ncbi.nlm.nih.gov/pubmed/38020429 http://dx.doi.org/10.1016/j.dib.2023.109692 |
work_keys_str_mv | AT yanhaohui uavpdd2023abenchmarkdatasetforpavementdistressdetectionbasedonuavimages AT zhangjunfei uavpdd2023abenchmarkdatasetforpavementdistressdetectionbasedonuavimages |