Cargando…
Significant myopic shift over time: Sixteen-year trends in overall refraction and age of myopia onset among Chinese children, with a focus on ages 4-6 years
BACKGROUND: Myopia or near-sightedness is a major cause of blindness in China and typically develops between the ages of 6-12 years. We aimed to investigate the change in refractive error and the age of myopia onset in Chinese children from 2005 to 2021. METHODS: We first conducted a series of cross...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
International Society of Global Health
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10630697/ https://www.ncbi.nlm.nih.gov/pubmed/37934967 http://dx.doi.org/10.7189/jogh.13.04144 |
Sumario: | BACKGROUND: Myopia or near-sightedness is a major cause of blindness in China and typically develops between the ages of 6-12 years. We aimed to investigate the change in refractive error and the age of myopia onset in Chinese children from 2005 to 2021. METHODS: We first conducted a series of cross-sectional studies to determine the refractive states and the age of myopia onset over time, after which we analysed longitudinal data to investigate the dose-response relationship between hyperopic reserve and future risk of myopia. The analysis was based on the refraction data of children aged 4-18 years who visited the Fudan University Eye and Ear, Nose, and Throat (FUEENT) Hospital, a large tertiary hospital in Shanghai, China, for eye examinations between 2005 and 2021. We examined the prevalence of hyperopia (spherical equivalent refractive error (SERE) >0.75D), pre-myopia (-0.50D < SERE ≤ 0.75D), and myopia (SERE ≤-0.50D), the average SERE for each age group at the initial visit, the average age of myopia onset, and the safety threshold of hyperopic reserve against myopia onset. RESULTS: We included 870 372 eligible patients aged 4-18 years who attended examination between 2005 and 2021, 567 893 (65.2%) of whom were myopic at their initial visit to FUEENT. The mean SERE decreased in most (n/N = 14/15) of the age groups over the 16 calendar years, with a mean SERE for the whole cohort decreasing from -1.01D (standard deviation (SD) = 3.46D) in 2005 to -1.30D (SD = 3.11D) in 2021. The prevalence of pre-myopia increased over the 16 years (P < 0.001), while those of myopia and hyperopia remained largely stable (both P > 0.05). We observed a significant decrease in the prevalence of hyperopia (2005: 65.4% vs 2021: 51.1%; P < 0.001) and a significant increase in the prevalence of pre-myopia (2005: 19.0% vs 2021: 26.5%; P < 0.001) and myopia (2005: 15.6% vs 2021: 22.4%; P < 0.001) in children aged 4-6 years. We found an earlier myopia onset over time, with the mean age of onset decreasing from 10.6 years in 2005 to 7.6 years in 2021 (P < 0.001). Children with a hyperopic reserve of less than 1.50D were at increased risk of developing myopia during a median follow-up of 1.3 years. CONCLUSIONS: We found an overall myopic shift in SERE in Chinese children aged 4-18 years over the past 16 years, particularly in those aged 4-6 years. The mean age of myopia onset decreased by three years over the same period. The “safety threshold” of hyperopic reserve we identified may help target the high-risk population for early prevention. |
---|