Cargando…

A comprehensive view on the apigenin impact on colorectal cancer: Focusing on cellular and molecular mechanisms

Colon cancer (CC) is one of the most common and deadly cancers worldwide. Oncologists are facing challenges such as development of drug resistance and lack of suitable drug options for CC treatment. Flavonoids are a group of natural compounds found in fruits, vegetables, and other plant‐based foods....

Descripción completa

Detalles Bibliográficos
Autores principales: Daneshvar, Siamak, Zamanian, Mohammad Yasin, Ivraghi, Mehraveh Sadeghi, Golmohammadi, Maryam, Modanloo, Mona, Kamiab, Zahra, Pourhosseini, Seyed Mohammad Ebrahim, Heidari, Mahsa, Bazmandegan, Gholamreza
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10630840/
https://www.ncbi.nlm.nih.gov/pubmed/37970406
http://dx.doi.org/10.1002/fsn3.3645
Descripción
Sumario:Colon cancer (CC) is one of the most common and deadly cancers worldwide. Oncologists are facing challenges such as development of drug resistance and lack of suitable drug options for CC treatment. Flavonoids are a group of natural compounds found in fruits, vegetables, and other plant‐based foods. According to research, they have a potential role in the prevention and treatment of cancer. Apigenin is a flavonoid that is present in many fruits and vegetables. It has been used as a natural antioxidant for a long time and has been considered due to its anticancer effects and low toxicity. The results of this review study show that apigenin has potential anticancer effects on CC cells through various mechanisms. In this comprehensive review, we present the cellular targets and signaling pathways of apigenin indicated to date in in vivo and in vitro CC models. Among the most important modulated pathways, Wnt/β‐catenin, PI3K/AKT/mTOR, MAPK/ERK, JNK, STAT3, Bcl‐xL and Mcl‐1, PKM2, and NF‐kB have been described. Furthermore, apigenin suppresses the cell cycle in G2/M phase in CC cells. In CC cells, apigenin‐induced apoptosis is increased by inhibiting the formation of autophagy. According to the results of this study, apigenin appears to have the potential to be a promising agent for CC therapy, but more research is required in the field of pharmacology and pharmacokinetics to establish the apigenin effects and its dosage for clinical studies.