Cargando…

Differences in Cerebral Tissue Oxygenation in Preterm Neonates Receiving Adult or Cord Blood Red Blood Cell Transfusions

IMPORTANCE: Repeated transfusions in preterm neonates with anemia of prematurity replace fetal hemoglobin (HbF) with adult Hb (HbA), which has a low oxygen affinity. The reduction of HbF is associated with a higher incidence of retinopathy of prematurity (ROP). OBJECTIVE: To assess whether HbF and H...

Descripción completa

Detalles Bibliográficos
Autores principales: Pellegrino, Claudio, Papacci, Patrizia, Beccia, Flavia, Serrao, Francesca, Cantone, Giulia Vanina, Cannetti, Giorgio, Giannantonio, Carmen, Vento, Giovanni, Teofili, Luciana
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Medical Association 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10630897/
https://www.ncbi.nlm.nih.gov/pubmed/37934499
http://dx.doi.org/10.1001/jamanetworkopen.2023.41643
Descripción
Sumario:IMPORTANCE: Repeated transfusions in preterm neonates with anemia of prematurity replace fetal hemoglobin (HbF) with adult Hb (HbA), which has a low oxygen affinity. The reduction of HbF is associated with a higher incidence of retinopathy of prematurity (ROP). OBJECTIVE: To assess whether HbF and HbA are differently associated with cerebral tissue oxygenation in preterm neonates. DESIGN, SETTING, AND PARTICIPANTS: This cohort study was a single-center, pilot study on cerebral oxygenation kinetics in preterm neonates with a gestational age between 24.0 weeks and 27.9 weeks who were admitted to the neonatal intensive care unit of Policlinico Universitario A. Gemelli IRCCS from December 27, 2021, to May 15, 2023. This study was ancillary to the ongoing, double-blind, multicenter Umbilical or Adult Donor Red Blood Cells in Extremely Low Gestational Age Neonates and Retinopathy of Prematurity (BORN) randomized clinical trial. The BORN trial outcome was ROP severity in neonates randomized to receive standard packed red blood cell (PRBC) transfusions obtained from RBCs of adult donors (A-RBCs) or from cord blood (CB-RBCs). According to standard procedures at the institute’s neonatal intensive care unit, patients concurrently received continuous cerebral near-infrared spectroscopy (NIRS) monitoring. This cohort study was not prespecified in the trial protocol. EXPOSURE: Transfusion with A-RBCs or CB-RBCs. MAIN OUTCOMES AND MEASURES: The main outcome was the kinetics of cerebral regional oxygen saturation (crSO(2)) and cerebral fraction of tissue oxygen extraction (cFTOE) associated with A-RBC or CB-RBC transfusions. Cerebral NIRS monitoring was performed by neonatologists and nurses, who were blinded to the PRBC type. The NIRS monitoring was conducted starting with the blood product order, during transfusion, and for the subsequent 24 hours after transfusion completion. The mean treatment effects of A-RBCs or CB-RBCs were quantified using a linear mixed model for repeated measures. RESULTS: Of 23 randomized neonates, 17 (11 male [64.7%]; median gestational age at birth, 25.6 weeks [IQR, 25.3-26.1 weeks]) with a median birth weight of 840 g (IQR, 580-900 g) were included in the study; NIRS was evaluated for 42 transfusion episodes, of which 22 were A-RBCs and 20 were CB-RBCs. Globally considering all posttransfusion time points, the overall crSO(2) covariate-adjusted mean after CB-RBC transfusions was 5.27% lower (95% CI, 1.20%-9.34%; P = .01) than that after A-RBC transfusions, while the cFTOE after CB-RBC transfusions was 6.18% higher (95% CI, 1.66%-10.69%; P = .009) than that after A-RBCs. CONCLUSIONS AND RELEVANCE: The findings of this cohort study suggest that A-RBC transfusions may be associated with more oxygen delivery to cerebral tissues of preterm neonates than transfusions from CB-RBCs. This finding may explain the previously observed association between low HbF and high ROP risk. It also suggests that use of CB to meet the RBC transfusion needs of neonates with a gestational age of less than 28 weeks may protect cerebral tissues from overexposure to oxygen.