Cargando…
Algorithmic Fairness of Machine Learning Models for Alzheimer Disease Progression
IMPORTANCE: Predictive models using machine learning techniques have potential to improve early detection and management of Alzheimer disease (AD). However, these models potentially have biases and may perpetuate or exacerbate existing disparities. OBJECTIVE: To characterize the algorithmic fairness...
Autores principales: | Yuan, Chenxi, Linn, Kristin A., Hubbard, Rebecca A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Medical Association
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10630899/ https://www.ncbi.nlm.nih.gov/pubmed/37934495 http://dx.doi.org/10.1001/jamanetworkopen.2023.42203 |
Ejemplares similares
-
Fairness of Machine Learning Algorithms for Predicting Foregone Preventive Dental Care for Adults
por: Schuch, Helena Silveira, et al.
Publicado: (2023) -
ReMiND: Recovery of Missing Neuroimaging using Diffusion Models with Application to Alzheimer’s Disease
por: Yuan, Chenxi, et al.
Publicado: (2023) -
Algorithmic fairness and bias mitigation for clinical machine learning with deep reinforcement learning
por: Yang, Jenny, et al.
Publicado: (2023) -
Performance of Machine Learning Algorithms for Predicting Progression to Dementia in Memory Clinic Patients
por: James, Charlotte, et al.
Publicado: (2021) -
QTG-Finder2: A Generalized Machine-Learning Algorithm for Prioritizing QTL Causal Genes in Plants
por: Lin, Fan, et al.
Publicado: (2020)