Cargando…
A comparative study of clustering methods on gene expression data for lung cancer prognosis
Lung cancer subtyping based on gene expression data is important for identifying patient subgroups with differing survival prognosis to facilitate customized treatment strategies for each subtype of patients. Unsupervised clustering methods are the traditional approach for clustering patients into s...
Autores principales: | Zhang, Jason Z., Wang, Chi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10630994/ https://www.ncbi.nlm.nih.gov/pubmed/37941025 http://dx.doi.org/10.1186/s13104-023-06604-8 |
Ejemplares similares
-
Clustering cancer gene expression data: a comparative study
por: de Souto, Marcilio CP, et al.
Publicado: (2008) -
CORAZON: a web server for data normalization and unsupervised clustering based on expression profiles
por: Ramos, Thaís A. R., et al.
Publicado: (2020) -
Clustering cancer gene expression data by projective clustering ensemble
por: Yu, Xianxue, et al.
Publicado: (2017) -
Comparative genomics reveals a widespread distribution of an exopolysaccharide biosynthesis gene cluster among Vibrionaceae
por: Lebellenger, Lou, et al.
Publicado: (2018) -
BioCluster: Tool for Identification and Clustering of Enterobacteriaceae Based on Biochemical Data
por: Abdullah, Ahmed, et al.
Publicado: (2015)