Cargando…
Interpretable machine learning models for early prediction of acute kidney injury after cardiac surgery
OBJECTIVE: Postoperative acute kidney injury (PO-AKI) is a common complication after cardiac surgery. We aimed to evaluate whether machine learning algorithms could significantly improve the risk prediction of PO-AKI. METHODS: The retrospective cohort study included 2310 adult patients undergoing ca...
Autores principales: | Jiang, Jicheng, Liu, Xinyun, Cheng, Zhaoyun, Liu, Qianjin, Xing, Wenlu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10631004/ https://www.ncbi.nlm.nih.gov/pubmed/37936067 http://dx.doi.org/10.1186/s12882-023-03324-w |
Ejemplares similares
-
Prediction of Acute Kidney Injury After Cardiac Surgery Using Interpretable Machine Learning
por: Ejmalian, Azar, et al.
Publicado: (2022) -
Prediction of all-cause mortality in coronary artery disease patients with atrial fibrillation based on machine learning models
por: Liu, Xinyun, et al.
Publicado: (2021) -
Application of interpretable machine learning for early prediction of prognosis in acute kidney injury
por: Hu, Chang, et al.
Publicado: (2022) -
Machine learning for the prediction of acute kidney injury in patients after cardiac surgery
por: Xue, Xin, et al.
Publicado: (2022) -
Machine learning in the prediction of cardiac surgery associated acute kidney injury with early postoperative biomarkers
por: Fan, Rui, et al.
Publicado: (2023)