Cargando…
Comparable performance of machine learning algorithms in predicting readmission and complications following total joint arthroplasty with external validation
BACKGROUND: The purpose of the study was to use Machine Learning (ML) to construct a risk calculator for patients who undergo Total Joint Arthroplasty (TJA) on the basis of New York State Statewide Planning and Research Cooperative System (SPARCS) data and externally validate the calculator on a sin...
Autores principales: | Shaikh, Hashim J. F., Botros, Mina, Ramirez, Gabriel, Thirukumaran, Caroline P., Ricciardi, Benjamin, Myers, Thomas G. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10631030/ https://www.ncbi.nlm.nih.gov/pubmed/37941068 http://dx.doi.org/10.1186/s42836-023-00208-0 |
Ejemplares similares
-
Development of a Machine Learning Algorithm for Prediction of Complications and Unplanned Readmission Following Reverse Total Shoulder Arthroplasty
por: Devana, Sai K., et al.
Publicado: (2021) -
Sex differences in complications and readmission rates following shoulder arthroplasty in the United States
por: Knapp, Brock M., et al.
Publicado: (2020) -
Complications in Total Joint Arthroplasties
por: Gómez-Barrena, Enrique, et al.
Publicado: (2019) -
Reimbursement Penalties and 30-Day Readmissions Following Total Joint Arthroplasty
por: Hollenbeak, Christopher S., et al.
Publicado: (2020) -
Readmission Risk Assessment Tool (RRAT) for Decreasing 30-Day Readmission Rates in Total Joint Arthroplasty (TJA) and Predicting Readmission
por: Dundon, John, et al.
Publicado: (2023)