Cargando…
Optimizing the maximum reported cluster size for the multinomial-based spatial scan statistic
BACKGROUND: Correctly identifying spatial disease cluster is a fundamental concern in public health and epidemiology. The spatial scan statistic is widely used for detecting spatial disease clusters in spatial epidemiology and disease surveillance. Many studies default to a maximum reported cluster...
Autores principales: | Moon, Jisu, Kim, Minseok, Jung, Inkyung |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10631089/ https://www.ncbi.nlm.nih.gov/pubmed/37940917 http://dx.doi.org/10.1186/s12942-023-00353-4 |
Ejemplares similares
-
Optimizing the maximum reported cluster size in the spatial scan statistic for survival data
por: Lee, Sujee, et al.
Publicado: (2021) -
Optimizing the maximum reported cluster size in the spatial scan statistic for ordinal data
por: Kim, Sehwi, et al.
Publicado: (2017) -
A simulation study for geographic cluster detection analysis on population-based health survey data using spatial scan statistics
por: Moon, Jisu, et al.
Publicado: (2022) -
Using Gini coefficient to determining optimal cluster reporting sizes for spatial scan statistics
por: Han, Junhee, et al.
Publicado: (2016) -
A nonparametric spatial scan statistic for continuous data
por: Jung, Inkyung, et al.
Publicado: (2015)