Cargando…

DNA methylation on C5-Cytosine and N6-Adenine in the Bursaphelenchus xylophilus genome

BACKGROUND: The pinewood nematode is the causal agent of the pine wilt disease, which causes severe ecological and economic losses in coniferous forests. The invasion of pine wood nematode has undergone various rapid adaptations to a wide range of temperatures and to new hosts and vector insects. DN...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Zhenkai, Li, Yongxia, Zhang, Xingyao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10631105/
https://www.ncbi.nlm.nih.gov/pubmed/37936063
http://dx.doi.org/10.1186/s12864-023-09783-7
Descripción
Sumario:BACKGROUND: The pinewood nematode is the causal agent of the pine wilt disease, which causes severe ecological and economic losses in coniferous forests. The invasion of pine wood nematode has undergone various rapid adaptations to a wide range of temperatures and to new hosts and vector insects. DNA methylation may play crucial roles in the rapid adaptation of PWN during invasion. However, whether the PWN genome contins functional DNA modifications remains elusive. RESULTS: Here, we detected the extensive presence of 5-methylcytosine (5mC) and N6-methyladenine (6mA) in the B. xylophilus genome, with low methylation levels at most positions. Cytosines were methylated in the CpG, CHG. and CHH sequence contexts, with the lowest methylation levels at CpG sites. The methylation levels of CpG and 6mA in gene regions showed opposite trends. The changes in the abundance of 5mC and 6mA showed the same trends in response to temperature change, but opposite trends during development. Sequence and phylogenetic analyses showed that the proteins BxDAMT and BxNMAD have typical characteristics of a methylase and demethylase, respectively, and are conserved among species. CONCLUSIONS: These findings shed light on the epigenetic modifications present in the genome of PWN, and will improve our understanding of its invasiveness and evolution. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12864-023-09783-7.