Cargando…
Hybrid deep learning approach to improve classification of low-volume high-dimensional data
BACKGROUND: The performance of machine learning classification methods relies heavily on the choice of features. In many domains, feature generation can be labor-intensive and require domain knowledge, and feature selection methods do not scale well in high-dimensional datasets. Deep learning has sh...
Autores principales: | Mavaie, Pegah, Holder, Lawrence, Skinner, Michael K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10631218/ https://www.ncbi.nlm.nih.gov/pubmed/37936066 http://dx.doi.org/10.1186/s12859-023-05557-w |
Ejemplares similares
-
Predicting environmentally responsive transgenerational differential DNA methylated regions (epimutations) in the genome using a hybrid deep-machine learning approach
por: Mavaie, Pegah, et al.
Publicado: (2021) -
Deep learning approach for cancer subtype classification using high-dimensional gene expression data
por: Shen, Jiquan, et al.
Publicado: (2022) -
A Hybrid Deep Learning Approach for ECG-Based Arrhythmia Classification
por: Madan, Parul, et al.
Publicado: (2022) -
Detection and classification of adult epilepsy using hybrid deep learning approach
por: Srinivasan, Saravanan, et al.
Publicado: (2023) -
Multi-level aspect based sentiment classification of Twitter data: using hybrid approach in deep learning
por: Janjua, Sadaf Hussain, et al.
Publicado: (2021)