Cargando…
Synthesis of graded CdS(1−x)Se(x) nanoplatelet alloys and heterostructures from pairs of chalcogenoureas with tailored conversion reactivity
A mixture of N,N,N′-trisubstituted thiourea and cyclic N,N,N′,N′-tetrasubstituted selenourea precursors were used to synthesize three monolayer thick CdS(1−x)Se(x) nanoplatelets in a single synthetic step. The microstructure of the nanoplatelets could be tuned from homogeneous alloys, to graded allo...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10631235/ https://www.ncbi.nlm.nih.gov/pubmed/37969574 http://dx.doi.org/10.1039/d3sc03384h |
_version_ | 1785146071768367104 |
---|---|
author | Saenz, Natalie Hamachi, Leslie S. Wolock, Anna Goodge, Berit H. Kuntzmann, Alexis Dubertret, Benoit Billinge, Isabel Kourkoutis, Lena F. Muller, David A. Crowther, Andrew C. Owen, Jonathan S. |
author_facet | Saenz, Natalie Hamachi, Leslie S. Wolock, Anna Goodge, Berit H. Kuntzmann, Alexis Dubertret, Benoit Billinge, Isabel Kourkoutis, Lena F. Muller, David A. Crowther, Andrew C. Owen, Jonathan S. |
author_sort | Saenz, Natalie |
collection | PubMed |
description | A mixture of N,N,N′-trisubstituted thiourea and cyclic N,N,N′,N′-tetrasubstituted selenourea precursors were used to synthesize three monolayer thick CdS(1−x)Se(x) nanoplatelets in a single synthetic step. The microstructure of the nanoplatelets could be tuned from homogeneous alloys, to graded alloys to core/crown heterostructures depending on the relative conversion reactivity of the sulfur and selenium precursors. UV-visible absorption and photoluminescence spectroscopy and scanning transmission electron microscopy electron energy loss spectroscopy (STEM-EELS) images demonstrate that the elemental distribution is governed by the relative precursor conversion kinetics. Slow conversion kinetics produced nanoplatelets with larger lateral dimensions, behavior that is characteristic of precursor conversion limited growth kinetics. Across a 10-fold range of reactivity, CdS nanoplatelets have 4× smaller lateral dimensions than CdSe nanoplatelets grown under identical conversion kinetics. The difference in size is consistent with a rate of CdSe growth that is 4× greater than the rate of CdS. The influence of the relative sulfide and selenide growth rates, the duration of the nucleation phase, and the solute composition on the nanoplatelet microstructure are discussed. |
format | Online Article Text |
id | pubmed-10631235 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-106312352023-11-15 Synthesis of graded CdS(1−x)Se(x) nanoplatelet alloys and heterostructures from pairs of chalcogenoureas with tailored conversion reactivity Saenz, Natalie Hamachi, Leslie S. Wolock, Anna Goodge, Berit H. Kuntzmann, Alexis Dubertret, Benoit Billinge, Isabel Kourkoutis, Lena F. Muller, David A. Crowther, Andrew C. Owen, Jonathan S. Chem Sci Chemistry A mixture of N,N,N′-trisubstituted thiourea and cyclic N,N,N′,N′-tetrasubstituted selenourea precursors were used to synthesize three monolayer thick CdS(1−x)Se(x) nanoplatelets in a single synthetic step. The microstructure of the nanoplatelets could be tuned from homogeneous alloys, to graded alloys to core/crown heterostructures depending on the relative conversion reactivity of the sulfur and selenium precursors. UV-visible absorption and photoluminescence spectroscopy and scanning transmission electron microscopy electron energy loss spectroscopy (STEM-EELS) images demonstrate that the elemental distribution is governed by the relative precursor conversion kinetics. Slow conversion kinetics produced nanoplatelets with larger lateral dimensions, behavior that is characteristic of precursor conversion limited growth kinetics. Across a 10-fold range of reactivity, CdS nanoplatelets have 4× smaller lateral dimensions than CdSe nanoplatelets grown under identical conversion kinetics. The difference in size is consistent with a rate of CdSe growth that is 4× greater than the rate of CdS. The influence of the relative sulfide and selenide growth rates, the duration of the nucleation phase, and the solute composition on the nanoplatelet microstructure are discussed. The Royal Society of Chemistry 2023-10-16 /pmc/articles/PMC10631235/ /pubmed/37969574 http://dx.doi.org/10.1039/d3sc03384h Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/ |
spellingShingle | Chemistry Saenz, Natalie Hamachi, Leslie S. Wolock, Anna Goodge, Berit H. Kuntzmann, Alexis Dubertret, Benoit Billinge, Isabel Kourkoutis, Lena F. Muller, David A. Crowther, Andrew C. Owen, Jonathan S. Synthesis of graded CdS(1−x)Se(x) nanoplatelet alloys and heterostructures from pairs of chalcogenoureas with tailored conversion reactivity |
title | Synthesis of graded CdS(1−x)Se(x) nanoplatelet alloys and heterostructures from pairs of chalcogenoureas with tailored conversion reactivity |
title_full | Synthesis of graded CdS(1−x)Se(x) nanoplatelet alloys and heterostructures from pairs of chalcogenoureas with tailored conversion reactivity |
title_fullStr | Synthesis of graded CdS(1−x)Se(x) nanoplatelet alloys and heterostructures from pairs of chalcogenoureas with tailored conversion reactivity |
title_full_unstemmed | Synthesis of graded CdS(1−x)Se(x) nanoplatelet alloys and heterostructures from pairs of chalcogenoureas with tailored conversion reactivity |
title_short | Synthesis of graded CdS(1−x)Se(x) nanoplatelet alloys and heterostructures from pairs of chalcogenoureas with tailored conversion reactivity |
title_sort | synthesis of graded cds(1−x)se(x) nanoplatelet alloys and heterostructures from pairs of chalcogenoureas with tailored conversion reactivity |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10631235/ https://www.ncbi.nlm.nih.gov/pubmed/37969574 http://dx.doi.org/10.1039/d3sc03384h |
work_keys_str_mv | AT saenznatalie synthesisofgradedcds1xsexnanoplateletalloysandheterostructuresfrompairsofchalcogenoureaswithtailoredconversionreactivity AT hamachileslies synthesisofgradedcds1xsexnanoplateletalloysandheterostructuresfrompairsofchalcogenoureaswithtailoredconversionreactivity AT wolockanna synthesisofgradedcds1xsexnanoplateletalloysandheterostructuresfrompairsofchalcogenoureaswithtailoredconversionreactivity AT goodgeberith synthesisofgradedcds1xsexnanoplateletalloysandheterostructuresfrompairsofchalcogenoureaswithtailoredconversionreactivity AT kuntzmannalexis synthesisofgradedcds1xsexnanoplateletalloysandheterostructuresfrompairsofchalcogenoureaswithtailoredconversionreactivity AT dubertretbenoit synthesisofgradedcds1xsexnanoplateletalloysandheterostructuresfrompairsofchalcogenoureaswithtailoredconversionreactivity AT billingeisabel synthesisofgradedcds1xsexnanoplateletalloysandheterostructuresfrompairsofchalcogenoureaswithtailoredconversionreactivity AT kourkoutislenaf synthesisofgradedcds1xsexnanoplateletalloysandheterostructuresfrompairsofchalcogenoureaswithtailoredconversionreactivity AT mullerdavida synthesisofgradedcds1xsexnanoplateletalloysandheterostructuresfrompairsofchalcogenoureaswithtailoredconversionreactivity AT crowtherandrewc synthesisofgradedcds1xsexnanoplateletalloysandheterostructuresfrompairsofchalcogenoureaswithtailoredconversionreactivity AT owenjonathans synthesisofgradedcds1xsexnanoplateletalloysandheterostructuresfrompairsofchalcogenoureaswithtailoredconversionreactivity |