Cargando…

Synthesis of graded CdS(1−x)Se(x) nanoplatelet alloys and heterostructures from pairs of chalcogenoureas with tailored conversion reactivity

A mixture of N,N,N′-trisubstituted thiourea and cyclic N,N,N′,N′-tetrasubstituted selenourea precursors were used to synthesize three monolayer thick CdS(1−x)Se(x) nanoplatelets in a single synthetic step. The microstructure of the nanoplatelets could be tuned from homogeneous alloys, to graded allo...

Descripción completa

Detalles Bibliográficos
Autores principales: Saenz, Natalie, Hamachi, Leslie S., Wolock, Anna, Goodge, Berit H., Kuntzmann, Alexis, Dubertret, Benoit, Billinge, Isabel, Kourkoutis, Lena F., Muller, David A., Crowther, Andrew C., Owen, Jonathan S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10631235/
https://www.ncbi.nlm.nih.gov/pubmed/37969574
http://dx.doi.org/10.1039/d3sc03384h
_version_ 1785146071768367104
author Saenz, Natalie
Hamachi, Leslie S.
Wolock, Anna
Goodge, Berit H.
Kuntzmann, Alexis
Dubertret, Benoit
Billinge, Isabel
Kourkoutis, Lena F.
Muller, David A.
Crowther, Andrew C.
Owen, Jonathan S.
author_facet Saenz, Natalie
Hamachi, Leslie S.
Wolock, Anna
Goodge, Berit H.
Kuntzmann, Alexis
Dubertret, Benoit
Billinge, Isabel
Kourkoutis, Lena F.
Muller, David A.
Crowther, Andrew C.
Owen, Jonathan S.
author_sort Saenz, Natalie
collection PubMed
description A mixture of N,N,N′-trisubstituted thiourea and cyclic N,N,N′,N′-tetrasubstituted selenourea precursors were used to synthesize three monolayer thick CdS(1−x)Se(x) nanoplatelets in a single synthetic step. The microstructure of the nanoplatelets could be tuned from homogeneous alloys, to graded alloys to core/crown heterostructures depending on the relative conversion reactivity of the sulfur and selenium precursors. UV-visible absorption and photoluminescence spectroscopy and scanning transmission electron microscopy electron energy loss spectroscopy (STEM-EELS) images demonstrate that the elemental distribution is governed by the relative precursor conversion kinetics. Slow conversion kinetics produced nanoplatelets with larger lateral dimensions, behavior that is characteristic of precursor conversion limited growth kinetics. Across a 10-fold range of reactivity, CdS nanoplatelets have 4× smaller lateral dimensions than CdSe nanoplatelets grown under identical conversion kinetics. The difference in size is consistent with a rate of CdSe growth that is 4× greater than the rate of CdS. The influence of the relative sulfide and selenide growth rates, the duration of the nucleation phase, and the solute composition on the nanoplatelet microstructure are discussed.
format Online
Article
Text
id pubmed-10631235
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher The Royal Society of Chemistry
record_format MEDLINE/PubMed
spelling pubmed-106312352023-11-15 Synthesis of graded CdS(1−x)Se(x) nanoplatelet alloys and heterostructures from pairs of chalcogenoureas with tailored conversion reactivity Saenz, Natalie Hamachi, Leslie S. Wolock, Anna Goodge, Berit H. Kuntzmann, Alexis Dubertret, Benoit Billinge, Isabel Kourkoutis, Lena F. Muller, David A. Crowther, Andrew C. Owen, Jonathan S. Chem Sci Chemistry A mixture of N,N,N′-trisubstituted thiourea and cyclic N,N,N′,N′-tetrasubstituted selenourea precursors were used to synthesize three monolayer thick CdS(1−x)Se(x) nanoplatelets in a single synthetic step. The microstructure of the nanoplatelets could be tuned from homogeneous alloys, to graded alloys to core/crown heterostructures depending on the relative conversion reactivity of the sulfur and selenium precursors. UV-visible absorption and photoluminescence spectroscopy and scanning transmission electron microscopy electron energy loss spectroscopy (STEM-EELS) images demonstrate that the elemental distribution is governed by the relative precursor conversion kinetics. Slow conversion kinetics produced nanoplatelets with larger lateral dimensions, behavior that is characteristic of precursor conversion limited growth kinetics. Across a 10-fold range of reactivity, CdS nanoplatelets have 4× smaller lateral dimensions than CdSe nanoplatelets grown under identical conversion kinetics. The difference in size is consistent with a rate of CdSe growth that is 4× greater than the rate of CdS. The influence of the relative sulfide and selenide growth rates, the duration of the nucleation phase, and the solute composition on the nanoplatelet microstructure are discussed. The Royal Society of Chemistry 2023-10-16 /pmc/articles/PMC10631235/ /pubmed/37969574 http://dx.doi.org/10.1039/d3sc03384h Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/
spellingShingle Chemistry
Saenz, Natalie
Hamachi, Leslie S.
Wolock, Anna
Goodge, Berit H.
Kuntzmann, Alexis
Dubertret, Benoit
Billinge, Isabel
Kourkoutis, Lena F.
Muller, David A.
Crowther, Andrew C.
Owen, Jonathan S.
Synthesis of graded CdS(1−x)Se(x) nanoplatelet alloys and heterostructures from pairs of chalcogenoureas with tailored conversion reactivity
title Synthesis of graded CdS(1−x)Se(x) nanoplatelet alloys and heterostructures from pairs of chalcogenoureas with tailored conversion reactivity
title_full Synthesis of graded CdS(1−x)Se(x) nanoplatelet alloys and heterostructures from pairs of chalcogenoureas with tailored conversion reactivity
title_fullStr Synthesis of graded CdS(1−x)Se(x) nanoplatelet alloys and heterostructures from pairs of chalcogenoureas with tailored conversion reactivity
title_full_unstemmed Synthesis of graded CdS(1−x)Se(x) nanoplatelet alloys and heterostructures from pairs of chalcogenoureas with tailored conversion reactivity
title_short Synthesis of graded CdS(1−x)Se(x) nanoplatelet alloys and heterostructures from pairs of chalcogenoureas with tailored conversion reactivity
title_sort synthesis of graded cds(1−x)se(x) nanoplatelet alloys and heterostructures from pairs of chalcogenoureas with tailored conversion reactivity
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10631235/
https://www.ncbi.nlm.nih.gov/pubmed/37969574
http://dx.doi.org/10.1039/d3sc03384h
work_keys_str_mv AT saenznatalie synthesisofgradedcds1xsexnanoplateletalloysandheterostructuresfrompairsofchalcogenoureaswithtailoredconversionreactivity
AT hamachileslies synthesisofgradedcds1xsexnanoplateletalloysandheterostructuresfrompairsofchalcogenoureaswithtailoredconversionreactivity
AT wolockanna synthesisofgradedcds1xsexnanoplateletalloysandheterostructuresfrompairsofchalcogenoureaswithtailoredconversionreactivity
AT goodgeberith synthesisofgradedcds1xsexnanoplateletalloysandheterostructuresfrompairsofchalcogenoureaswithtailoredconversionreactivity
AT kuntzmannalexis synthesisofgradedcds1xsexnanoplateletalloysandheterostructuresfrompairsofchalcogenoureaswithtailoredconversionreactivity
AT dubertretbenoit synthesisofgradedcds1xsexnanoplateletalloysandheterostructuresfrompairsofchalcogenoureaswithtailoredconversionreactivity
AT billingeisabel synthesisofgradedcds1xsexnanoplateletalloysandheterostructuresfrompairsofchalcogenoureaswithtailoredconversionreactivity
AT kourkoutislenaf synthesisofgradedcds1xsexnanoplateletalloysandheterostructuresfrompairsofchalcogenoureaswithtailoredconversionreactivity
AT mullerdavida synthesisofgradedcds1xsexnanoplateletalloysandheterostructuresfrompairsofchalcogenoureaswithtailoredconversionreactivity
AT crowtherandrewc synthesisofgradedcds1xsexnanoplateletalloysandheterostructuresfrompairsofchalcogenoureaswithtailoredconversionreactivity
AT owenjonathans synthesisofgradedcds1xsexnanoplateletalloysandheterostructuresfrompairsofchalcogenoureaswithtailoredconversionreactivity