Cargando…
Development, Deployment, and Implementation of a Machine Learning Surgical Case Length Prediction Model and Prospective Evaluation
OBJECTIVE: To implement a machine learning model using only the restricted data available at case creation time to predict surgical case length for multiple services at different locations. BACKGROUND: The operating room is one of the most expensive resources in a health system, estimated to cost $2...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Lippincott Williams & Wilkins
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10631498/ https://www.ncbi.nlm.nih.gov/pubmed/37264901 http://dx.doi.org/10.1097/SLA.0000000000005936 |
Sumario: | OBJECTIVE: To implement a machine learning model using only the restricted data available at case creation time to predict surgical case length for multiple services at different locations. BACKGROUND: The operating room is one of the most expensive resources in a health system, estimated to cost $22 to $133 per minute and generate about 40% of hospital revenue. Accurate prediction of surgical case length is necessary for efficient scheduling and cost-effective utilization of the operating room and other resources. METHODS: We introduced a similarity cascade to capture the complexity of cases and surgeon influence on the case length and incorporated that into a gradient-boosting machine learning model. The model loss function was customized to improve the balance between over- and under-prediction of the case length. A production pipeline was created to seamlessly deploy and implement the model across our institution. RESULTS: The prospective analysis showed that the model output was gradually adopted by the schedulers and outperformed the scheduler-predicted case length from August to December 2022. In 33,815 surgical cases across outpatient and inpatient platforms, the operational implementation predicted 11.2% fewer underpredicted cases and 5.9% more cases within 20% of the actual case length compared with the schedulers and only overpredicted 5.3% more. The model assisted schedulers to predict 3.4% more cases within 20% of the actual case length and 4.3% fewer underpredicted cases. CONCLUSIONS: We created a unique framework that is being leveraged every day to predict surgical case length more accurately at case posting time and could be potentially utilized to deploy future machine learning models. |
---|