Cargando…
Artifact Correction in Retinal Nerve Fiber Layer Thickness Maps Using Deep Learning and Its Clinical Utility in Glaucoma
PURPOSE: Correcting retinal nerve fiber layer thickness (RNFLT) artifacts in glaucoma with deep learning and evaluate its clinical usefulness. METHODS: We included 24,257 patients with optical coherence tomography and reliable visual field (VF) measurements within 30 days and 3,233 patients with rel...
Autores principales: | Shi, Min, Sun, Jessica A., Lokhande, Anagha, Tian, Yu, Luo, Yan, Elze, Tobias, Shen, Lucy Q., Wang, Mengyu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Association for Research in Vision and Ophthalmology
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10631515/ https://www.ncbi.nlm.nih.gov/pubmed/37934137 http://dx.doi.org/10.1167/tvst.12.11.12 |
Ejemplares similares
-
Assessing Surface Shapes of the Optic Nerve Head and Peripapillary Retinal Nerve Fiber Layer in Glaucoma with Artificial Intelligence
por: Saini, Chhavi, et al.
Publicado: (2022) -
Early Glaucoma Detection by Using Style Transfer to Predict Retinal Nerve Fiber Layer Thickness Distribution on the Fundus Photograph
por: Chen, Henry Shen-Lih, et al.
Publicado: (2022) -
An Artificial Intelligence Approach to Assess Spatial Patterns of Retinal Nerve Fiber Layer Thickness Maps in Glaucoma
por: Wang, Mengyu, et al.
Publicado: (2020) -
Automatic Artifact Detection Algorithm in Fetal MRI
por: Lim, Adam, et al.
Publicado: (2022) -
Normative Percentiles of Retinal Nerve Fiber Layer Thickness and Glaucomatous Visual Field Loss
por: Singh, Rishabh, et al.
Publicado: (2023)