Cargando…
From multimodal features to behavioural inferences: A pipeline to model engagement in human-robot interactions
Modelling the engaging behaviour of humans using multimodal data collected during human-robot interactions has attracted much research interest. Most methods that have been proposed previously predict engaging behaviour directly from multimodal features, and do not incorporate personality inferences...
Autores principales: | Joshi, Soham, Malavalli, Arpitha, Rao, Shrisha |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10631623/ https://www.ncbi.nlm.nih.gov/pubmed/37939030 http://dx.doi.org/10.1371/journal.pone.0285749 |
Ejemplares similares
-
Active Inference Through Energy Minimization in Multimodal Affective Human–Robot Interaction
por: Horii, Takato, et al.
Publicado: (2021) -
Robotic Telemedicine for Mental Health: A Multimodal Approach to Improve Human-Robot Engagement
por: Lima, Maria R., et al.
Publicado: (2021) -
Recent advancements in multimodal human–robot interaction
por: Su, Hang, et al.
Publicado: (2023) -
A multimodal human-robot sign language interaction framework applied in social robots
por: Li, Jie, et al.
Publicado: (2023) -
Affect-Driven Learning of Robot Behaviour for Collaborative Human-Robot Interactions
por: Churamani, Nikhil, et al.
Publicado: (2022)