Cargando…
Perceptual metrics for odorants: Learning from non-expert similarity feedback using machine learning
Defining perceptual similarity metrics for odorant comparisons is crucial to understanding the mechanism of olfactory perception. Current methods in olfaction rely on molecular physicochemical features or discrete verbal descriptors (floral, burnt, etc.) to approximate perceptual (dis)similarity bet...
Autores principales: | Kumari, Priyadarshini, Besold, Tarek, Spranger, Michael |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10631653/ https://www.ncbi.nlm.nih.gov/pubmed/37939067 http://dx.doi.org/10.1371/journal.pone.0291767 |
Ejemplares similares
-
Predicting Odor Perceptual Similarity from Odor Structure
por: Snitz, Kobi, et al.
Publicado: (2013) -
Getting out the caliper: Behavioral quantification of perceptual odor similarity
por: Ackels, Tobias, et al.
Publicado: (2022) -
Image Perceptual Similarity Metrics for the Assessment of Basal Cell Carcinoma
por: Spyridonos, Panagiota, et al.
Publicado: (2023) -
Feedback Valence Affects Auditory Perceptual Learning Independently of Feedback Probability
por: Amitay, Sygal, et al.
Publicado: (2015) -
Comparing molecular representations, e-nose signals, and other featurization, for learning to smell aroma molecules
por: Debnath, Tanoy, et al.
Publicado: (2023)