Cargando…

Social media feedback and extreme opinion expression

On popular social media platforms such as Twitter, Facebook, Instagram, or Tiktok, the quantitative feedback received by content producers is asymmetric: counts of positive reactions such as ‘likes,’ or ‘retweets,’ are easily observed but similar counts of negative reactions are not directly availab...

Descripción completa

Detalles Bibliográficos
Autores principales: Konovalova, Elizaveta, Le Mens, Gaël, Schöll, Nikolas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10631661/
https://www.ncbi.nlm.nih.gov/pubmed/37939070
http://dx.doi.org/10.1371/journal.pone.0293805
Descripción
Sumario:On popular social media platforms such as Twitter, Facebook, Instagram, or Tiktok, the quantitative feedback received by content producers is asymmetric: counts of positive reactions such as ‘likes,’ or ‘retweets,’ are easily observed but similar counts of negative reactions are not directly available. We study how this design feature of social media platforms affects the expression of extreme opinions. Using simulations of a learning model, we compare two feedback environments that differ in terms of the availability of negative reaction counts. We find that expressed opinions are generally more extreme when negative reaction counts are not available than when they are. We rely on analyses of Twitter data and several online experiments to provide empirical support for key model assumptions and test model predictions. Our findings suggest that a simple design change might limit, under certain conditions, the expression of extreme opinions on social media.