Cargando…

Emergence and inversion of chirality in hierarchical assemblies of CdS nanocrystal fibers

Arranging semiconducting nanocrystals into ordered superstructures is a promising platform to study fundamental light-matter interactions and develop programmable optical metamaterials. We investigated how the geometrical arrangement of CdS nanocrystals in hierarchical assemblies affects chiroptical...

Descripción completa

Detalles Bibliográficos
Autores principales: Gonzalez, Alexander V., Gonzalez, Miranda, Hanrath, Tobias
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10631732/
https://www.ncbi.nlm.nih.gov/pubmed/37939188
http://dx.doi.org/10.1126/sciadv.adi5520
Descripción
Sumario:Arranging semiconducting nanocrystals into ordered superstructures is a promising platform to study fundamental light-matter interactions and develop programmable optical metamaterials. We investigated how the geometrical arrangement of CdS nanocrystals in hierarchical assemblies affects chiroptical properties. To create these structures, we controlled the evaporation of a colloidal CdS nanocrystal solution between two parallel plates. We combined in situ microscopy and computational modeling to establish a formation mechanism involving the shear-induced alignment of nanocrystal fibers and the subsequent mechanical relaxation of the stretched fibers to form Raman noodle–type band textures. The high linear anisotropy in these films shares many similarities with cholesteric liquid crystals. The films deposited on top and bottom surfaces exhibit opposite chirality. The mechanistic insights from this study are consequential to enable future advances in the design and fabrication of programmable optical metamaterials for further development of polarization-based optics toward applications in sensing, hyperspectral imaging, and quantum information technology.