Cargando…

Novel insights into the ecDNA formation mechanism involving MSH3 in methotrexate-resistant human colorectal cancer cells

Extrachromosomal DNAs (ecDNAs), also known as double minutes (DMs), can induce a fast increase in gene copy numbers and promote the development of cancer, including drug resistance. MutS homolog 3 (MSH3), a key protein in mismatch repair, has been indicated to participate in the regulation of DNA do...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Xu, Qu, Yanan, Xing, Ruonan, Zhou, Jing, Liu, Yanghe, Zhang, Huishu, Zhu, Jing, Ma, Jinfa, Cui, Xiaobo, Song, Tiantian, Xing, Shukai, Ji, Guohua, Liu, Peng, Sun, Wenjing, Fu, Songbin, Meng, Xiangning
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10631765/
https://www.ncbi.nlm.nih.gov/pubmed/37888748
http://dx.doi.org/10.3892/ijo.2023.5582
Descripción
Sumario:Extrachromosomal DNAs (ecDNAs), also known as double minutes (DMs), can induce a fast increase in gene copy numbers and promote the development of cancer, including drug resistance. MutS homolog 3 (MSH3), a key protein in mismatch repair, has been indicated to participate in the regulation of DNA double-strand break (DSB) repair, which has been reported to be associated with the formation of ecDNAs. However, it remains unclear whether MSH3 can influence drug resistance via ecDNAs in cancer. In the present study, high MSH3 expression was observed in methotrexate (MTX)-resistant HT29 cells [DM- and homogeneously staining region (HSR)-containing cells] compared with parental HT29 cells. Additionally, decreased amounts of ecDNAs, HSRs and amplified genes locating on ecDNAs and HSRs were detected following depletion of MSH3 and this could be reversed by overexpressing MSH3 in DM-containing cells. No corresponding changes were found in HSR-containing cells. The present study further verified the involvement of MSH3-regulated DNA DSB repair pathways in the formation of ecDNAs by detecting the expression of core proteins and pathway activity. Furthermore, expulsion of ecDNAs/HSRs was detected and increased frequencies of micronuclei/nuclear buds with dihydrofolate reductase (DHFR) signals were observed in MSH3-depleted DM-containing cells. Finally, changes in MSH3 expression could affect DHFR amplification-derived DHFR expression and cell sensitivity to MTX, suggesting that MSH3 may influence cancer drug resistance by altering the amount of ecDNAs. In conclusion, the present study revealed a novel mechanism involving MSH3 in the regulation of ecDNAs by DSB repair, which will have clinical value in the treatment of ecDNA-based drug resistance in cancer.