Cargando…

Non-invasive left ventricular pressure-volume loops from cardiovascular magnetic resonance imaging and brachial blood pressure: validation using pressure catheter measurements

AIMS: Left ventricular (LV) pressure-volume (PV) loops provide gold-standard physiological information but require invasive measurements of ventricular intracavity pressure, limiting clinical and research applications. A non-invasive method for the computation of PV loops from magnetic resonance ima...

Descripción completa

Detalles Bibliográficos
Autores principales: Arvidsson, Per M, Green, Peregrine G, Watson, William D, Shanmuganathan, Mayooran, Heiberg, Einar, De Maria, Giovanni Luigi, Arheden, Håkan, Herring, Neil, Rider, Oliver J
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10631830/
https://www.ncbi.nlm.nih.gov/pubmed/37969333
http://dx.doi.org/10.1093/ehjimp/qyad035
_version_ 1785146100403929088
author Arvidsson, Per M
Green, Peregrine G
Watson, William D
Shanmuganathan, Mayooran
Heiberg, Einar
De Maria, Giovanni Luigi
Arheden, Håkan
Herring, Neil
Rider, Oliver J
author_facet Arvidsson, Per M
Green, Peregrine G
Watson, William D
Shanmuganathan, Mayooran
Heiberg, Einar
De Maria, Giovanni Luigi
Arheden, Håkan
Herring, Neil
Rider, Oliver J
author_sort Arvidsson, Per M
collection PubMed
description AIMS: Left ventricular (LV) pressure-volume (PV) loops provide gold-standard physiological information but require invasive measurements of ventricular intracavity pressure, limiting clinical and research applications. A non-invasive method for the computation of PV loops from magnetic resonance imaging and brachial cuff blood pressure has recently been proposed. Here we evaluated the fidelity of the non-invasive PV algorithm against invasive LV pressures in humans. METHODS AND RESULTS: Four heart failure patients with EF < 35% and LV dyssynchrony underwent cardiovascular magnetic resonance (CMR) imaging and subsequent LV catheterization with sequential administration of two different intravenous metabolic substrate infusions (insulin/dextrose and lipid emulsion), producing eight datasets at different haemodynamic states. Pressure-volume loops were computed from CMR volumes combined with (i) a time-varying elastance function scaled to brachial blood pressure and temporally stretched to match volume data, or (ii) invasive pressures averaged from 19 to 30 sampled beats. Method comparison was conducted using linear regression and Bland-Altman analysis. Non-invasively derived PV loop parameters demonstrated high correlation and low bias when compared to invasive data for stroke work (R(2) = 0.96, P < 0.0001, bias 4.6%), potential energy (R(2) = 0.83, P = 0.001, bias 1.5%), end-systolic pressure-volume relationship (R(2) = 0.89, P = 0.0004, bias 5.8%), ventricular efficiency (R(2) = 0.98, P < 0.0001, bias 0.8%), arterial elastance (R(2) = 0.88, P = 0.0006, bias −8.0%), mean external power (R(2) = 0.92, P = 0.0002, bias 4.4%), and energy per ejected volume (R(2) = 0.89, P = 0.0001, bias 3.7%). Variations in estimated end-diastolic pressure did not significantly affect results (P > 0.05 for all). Intraobserver analysis after one year demonstrated 0.9–3.4% bias for LV volumetry and 0.2–5.4% for PV loop-derived parameters. CONCLUSION: Pressure-volume loops can be precisely and accurately computed from CMR imaging and brachial cuff blood pressure in humans.
format Online
Article
Text
id pubmed-10631830
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-106318302023-11-15 Non-invasive left ventricular pressure-volume loops from cardiovascular magnetic resonance imaging and brachial blood pressure: validation using pressure catheter measurements Arvidsson, Per M Green, Peregrine G Watson, William D Shanmuganathan, Mayooran Heiberg, Einar De Maria, Giovanni Luigi Arheden, Håkan Herring, Neil Rider, Oliver J Eur Heart J Imaging Methods Pract Original Article AIMS: Left ventricular (LV) pressure-volume (PV) loops provide gold-standard physiological information but require invasive measurements of ventricular intracavity pressure, limiting clinical and research applications. A non-invasive method for the computation of PV loops from magnetic resonance imaging and brachial cuff blood pressure has recently been proposed. Here we evaluated the fidelity of the non-invasive PV algorithm against invasive LV pressures in humans. METHODS AND RESULTS: Four heart failure patients with EF < 35% and LV dyssynchrony underwent cardiovascular magnetic resonance (CMR) imaging and subsequent LV catheterization with sequential administration of two different intravenous metabolic substrate infusions (insulin/dextrose and lipid emulsion), producing eight datasets at different haemodynamic states. Pressure-volume loops were computed from CMR volumes combined with (i) a time-varying elastance function scaled to brachial blood pressure and temporally stretched to match volume data, or (ii) invasive pressures averaged from 19 to 30 sampled beats. Method comparison was conducted using linear regression and Bland-Altman analysis. Non-invasively derived PV loop parameters demonstrated high correlation and low bias when compared to invasive data for stroke work (R(2) = 0.96, P < 0.0001, bias 4.6%), potential energy (R(2) = 0.83, P = 0.001, bias 1.5%), end-systolic pressure-volume relationship (R(2) = 0.89, P = 0.0004, bias 5.8%), ventricular efficiency (R(2) = 0.98, P < 0.0001, bias 0.8%), arterial elastance (R(2) = 0.88, P = 0.0006, bias −8.0%), mean external power (R(2) = 0.92, P = 0.0002, bias 4.4%), and energy per ejected volume (R(2) = 0.89, P = 0.0001, bias 3.7%). Variations in estimated end-diastolic pressure did not significantly affect results (P > 0.05 for all). Intraobserver analysis after one year demonstrated 0.9–3.4% bias for LV volumetry and 0.2–5.4% for PV loop-derived parameters. CONCLUSION: Pressure-volume loops can be precisely and accurately computed from CMR imaging and brachial cuff blood pressure in humans. Oxford University Press 2023-10-25 /pmc/articles/PMC10631830/ /pubmed/37969333 http://dx.doi.org/10.1093/ehjimp/qyad035 Text en © The Author(s) 2023. Published by Oxford University Press on behalf of the European Society of Cardiology. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Original Article
Arvidsson, Per M
Green, Peregrine G
Watson, William D
Shanmuganathan, Mayooran
Heiberg, Einar
De Maria, Giovanni Luigi
Arheden, Håkan
Herring, Neil
Rider, Oliver J
Non-invasive left ventricular pressure-volume loops from cardiovascular magnetic resonance imaging and brachial blood pressure: validation using pressure catheter measurements
title Non-invasive left ventricular pressure-volume loops from cardiovascular magnetic resonance imaging and brachial blood pressure: validation using pressure catheter measurements
title_full Non-invasive left ventricular pressure-volume loops from cardiovascular magnetic resonance imaging and brachial blood pressure: validation using pressure catheter measurements
title_fullStr Non-invasive left ventricular pressure-volume loops from cardiovascular magnetic resonance imaging and brachial blood pressure: validation using pressure catheter measurements
title_full_unstemmed Non-invasive left ventricular pressure-volume loops from cardiovascular magnetic resonance imaging and brachial blood pressure: validation using pressure catheter measurements
title_short Non-invasive left ventricular pressure-volume loops from cardiovascular magnetic resonance imaging and brachial blood pressure: validation using pressure catheter measurements
title_sort non-invasive left ventricular pressure-volume loops from cardiovascular magnetic resonance imaging and brachial blood pressure: validation using pressure catheter measurements
topic Original Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10631830/
https://www.ncbi.nlm.nih.gov/pubmed/37969333
http://dx.doi.org/10.1093/ehjimp/qyad035
work_keys_str_mv AT arvidssonperm noninvasiveleftventricularpressurevolumeloopsfromcardiovascularmagneticresonanceimagingandbrachialbloodpressurevalidationusingpressurecathetermeasurements
AT greenperegrineg noninvasiveleftventricularpressurevolumeloopsfromcardiovascularmagneticresonanceimagingandbrachialbloodpressurevalidationusingpressurecathetermeasurements
AT watsonwilliamd noninvasiveleftventricularpressurevolumeloopsfromcardiovascularmagneticresonanceimagingandbrachialbloodpressurevalidationusingpressurecathetermeasurements
AT shanmuganathanmayooran noninvasiveleftventricularpressurevolumeloopsfromcardiovascularmagneticresonanceimagingandbrachialbloodpressurevalidationusingpressurecathetermeasurements
AT heibergeinar noninvasiveleftventricularpressurevolumeloopsfromcardiovascularmagneticresonanceimagingandbrachialbloodpressurevalidationusingpressurecathetermeasurements
AT demariagiovanniluigi noninvasiveleftventricularpressurevolumeloopsfromcardiovascularmagneticresonanceimagingandbrachialbloodpressurevalidationusingpressurecathetermeasurements
AT arhedenhakan noninvasiveleftventricularpressurevolumeloopsfromcardiovascularmagneticresonanceimagingandbrachialbloodpressurevalidationusingpressurecathetermeasurements
AT herringneil noninvasiveleftventricularpressurevolumeloopsfromcardiovascularmagneticresonanceimagingandbrachialbloodpressurevalidationusingpressurecathetermeasurements
AT rideroliverj noninvasiveleftventricularpressurevolumeloopsfromcardiovascularmagneticresonanceimagingandbrachialbloodpressurevalidationusingpressurecathetermeasurements