Cargando…

Cell-free biosynthesis combined with deep learning accelerates de novo-development of antimicrobial peptides

Bioactive peptides are key molecules in health and medicine. Deep learning holds a big promise for the discovery and design of bioactive peptides. Yet, suitable experimental approaches are required to validate candidates in high throughput and at low cost. Here, we established a cell-free protein sy...

Descripción completa

Detalles Bibliográficos
Autores principales: Pandi, Amir, Adam, David, Zare, Amir, Trinh, Van Tuan, Schaefer, Stefan L., Burt, Marie, Klabunde, Björn, Bobkova, Elizaveta, Kushwaha, Manish, Foroughijabbari, Yeganeh, Braun, Peter, Spahn, Christoph, Preußer, Christian, Pogge von Strandmann, Elke, Bode, Helge B., von Buttlar, Heiner, Bertrams, Wilhelm, Jung, Anna Lena, Abendroth, Frank, Schmeck, Bernd, Hummer, Gerhard, Vázquez, Olalla, Erb, Tobias J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10632401/
https://www.ncbi.nlm.nih.gov/pubmed/37938588
http://dx.doi.org/10.1038/s41467-023-42434-9
_version_ 1785132568135335936
author Pandi, Amir
Adam, David
Zare, Amir
Trinh, Van Tuan
Schaefer, Stefan L.
Burt, Marie
Klabunde, Björn
Bobkova, Elizaveta
Kushwaha, Manish
Foroughijabbari, Yeganeh
Braun, Peter
Spahn, Christoph
Preußer, Christian
Pogge von Strandmann, Elke
Bode, Helge B.
von Buttlar, Heiner
Bertrams, Wilhelm
Jung, Anna Lena
Abendroth, Frank
Schmeck, Bernd
Hummer, Gerhard
Vázquez, Olalla
Erb, Tobias J.
author_facet Pandi, Amir
Adam, David
Zare, Amir
Trinh, Van Tuan
Schaefer, Stefan L.
Burt, Marie
Klabunde, Björn
Bobkova, Elizaveta
Kushwaha, Manish
Foroughijabbari, Yeganeh
Braun, Peter
Spahn, Christoph
Preußer, Christian
Pogge von Strandmann, Elke
Bode, Helge B.
von Buttlar, Heiner
Bertrams, Wilhelm
Jung, Anna Lena
Abendroth, Frank
Schmeck, Bernd
Hummer, Gerhard
Vázquez, Olalla
Erb, Tobias J.
author_sort Pandi, Amir
collection PubMed
description Bioactive peptides are key molecules in health and medicine. Deep learning holds a big promise for the discovery and design of bioactive peptides. Yet, suitable experimental approaches are required to validate candidates in high throughput and at low cost. Here, we established a cell-free protein synthesis (CFPS) pipeline for the rapid and inexpensive production of antimicrobial peptides (AMPs) directly from DNA templates. To validate our platform, we used deep learning to design thousands of AMPs de novo. Using computational methods, we prioritized 500 candidates that we produced and screened with our CFPS pipeline. We identified 30 functional AMPs, which we characterized further through molecular dynamics simulations, antimicrobial activity and toxicity. Notably, six de novo-AMPs feature broad-spectrum activity against multidrug-resistant pathogens and do not develop bacterial resistance. Our work demonstrates the potential of CFPS for high throughput and low-cost production and testing of bioactive peptides within less than 24 h.
format Online
Article
Text
id pubmed-10632401
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-106324012023-11-10 Cell-free biosynthesis combined with deep learning accelerates de novo-development of antimicrobial peptides Pandi, Amir Adam, David Zare, Amir Trinh, Van Tuan Schaefer, Stefan L. Burt, Marie Klabunde, Björn Bobkova, Elizaveta Kushwaha, Manish Foroughijabbari, Yeganeh Braun, Peter Spahn, Christoph Preußer, Christian Pogge von Strandmann, Elke Bode, Helge B. von Buttlar, Heiner Bertrams, Wilhelm Jung, Anna Lena Abendroth, Frank Schmeck, Bernd Hummer, Gerhard Vázquez, Olalla Erb, Tobias J. Nat Commun Article Bioactive peptides are key molecules in health and medicine. Deep learning holds a big promise for the discovery and design of bioactive peptides. Yet, suitable experimental approaches are required to validate candidates in high throughput and at low cost. Here, we established a cell-free protein synthesis (CFPS) pipeline for the rapid and inexpensive production of antimicrobial peptides (AMPs) directly from DNA templates. To validate our platform, we used deep learning to design thousands of AMPs de novo. Using computational methods, we prioritized 500 candidates that we produced and screened with our CFPS pipeline. We identified 30 functional AMPs, which we characterized further through molecular dynamics simulations, antimicrobial activity and toxicity. Notably, six de novo-AMPs feature broad-spectrum activity against multidrug-resistant pathogens and do not develop bacterial resistance. Our work demonstrates the potential of CFPS for high throughput and low-cost production and testing of bioactive peptides within less than 24 h. Nature Publishing Group UK 2023-11-08 /pmc/articles/PMC10632401/ /pubmed/37938588 http://dx.doi.org/10.1038/s41467-023-42434-9 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Pandi, Amir
Adam, David
Zare, Amir
Trinh, Van Tuan
Schaefer, Stefan L.
Burt, Marie
Klabunde, Björn
Bobkova, Elizaveta
Kushwaha, Manish
Foroughijabbari, Yeganeh
Braun, Peter
Spahn, Christoph
Preußer, Christian
Pogge von Strandmann, Elke
Bode, Helge B.
von Buttlar, Heiner
Bertrams, Wilhelm
Jung, Anna Lena
Abendroth, Frank
Schmeck, Bernd
Hummer, Gerhard
Vázquez, Olalla
Erb, Tobias J.
Cell-free biosynthesis combined with deep learning accelerates de novo-development of antimicrobial peptides
title Cell-free biosynthesis combined with deep learning accelerates de novo-development of antimicrobial peptides
title_full Cell-free biosynthesis combined with deep learning accelerates de novo-development of antimicrobial peptides
title_fullStr Cell-free biosynthesis combined with deep learning accelerates de novo-development of antimicrobial peptides
title_full_unstemmed Cell-free biosynthesis combined with deep learning accelerates de novo-development of antimicrobial peptides
title_short Cell-free biosynthesis combined with deep learning accelerates de novo-development of antimicrobial peptides
title_sort cell-free biosynthesis combined with deep learning accelerates de novo-development of antimicrobial peptides
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10632401/
https://www.ncbi.nlm.nih.gov/pubmed/37938588
http://dx.doi.org/10.1038/s41467-023-42434-9
work_keys_str_mv AT pandiamir cellfreebiosynthesiscombinedwithdeeplearningacceleratesdenovodevelopmentofantimicrobialpeptides
AT adamdavid cellfreebiosynthesiscombinedwithdeeplearningacceleratesdenovodevelopmentofantimicrobialpeptides
AT zareamir cellfreebiosynthesiscombinedwithdeeplearningacceleratesdenovodevelopmentofantimicrobialpeptides
AT trinhvantuan cellfreebiosynthesiscombinedwithdeeplearningacceleratesdenovodevelopmentofantimicrobialpeptides
AT schaeferstefanl cellfreebiosynthesiscombinedwithdeeplearningacceleratesdenovodevelopmentofantimicrobialpeptides
AT burtmarie cellfreebiosynthesiscombinedwithdeeplearningacceleratesdenovodevelopmentofantimicrobialpeptides
AT klabundebjorn cellfreebiosynthesiscombinedwithdeeplearningacceleratesdenovodevelopmentofantimicrobialpeptides
AT bobkovaelizaveta cellfreebiosynthesiscombinedwithdeeplearningacceleratesdenovodevelopmentofantimicrobialpeptides
AT kushwahamanish cellfreebiosynthesiscombinedwithdeeplearningacceleratesdenovodevelopmentofantimicrobialpeptides
AT foroughijabbariyeganeh cellfreebiosynthesiscombinedwithdeeplearningacceleratesdenovodevelopmentofantimicrobialpeptides
AT braunpeter cellfreebiosynthesiscombinedwithdeeplearningacceleratesdenovodevelopmentofantimicrobialpeptides
AT spahnchristoph cellfreebiosynthesiscombinedwithdeeplearningacceleratesdenovodevelopmentofantimicrobialpeptides
AT preußerchristian cellfreebiosynthesiscombinedwithdeeplearningacceleratesdenovodevelopmentofantimicrobialpeptides
AT poggevonstrandmannelke cellfreebiosynthesiscombinedwithdeeplearningacceleratesdenovodevelopmentofantimicrobialpeptides
AT bodehelgeb cellfreebiosynthesiscombinedwithdeeplearningacceleratesdenovodevelopmentofantimicrobialpeptides
AT vonbuttlarheiner cellfreebiosynthesiscombinedwithdeeplearningacceleratesdenovodevelopmentofantimicrobialpeptides
AT bertramswilhelm cellfreebiosynthesiscombinedwithdeeplearningacceleratesdenovodevelopmentofantimicrobialpeptides
AT jungannalena cellfreebiosynthesiscombinedwithdeeplearningacceleratesdenovodevelopmentofantimicrobialpeptides
AT abendrothfrank cellfreebiosynthesiscombinedwithdeeplearningacceleratesdenovodevelopmentofantimicrobialpeptides
AT schmeckbernd cellfreebiosynthesiscombinedwithdeeplearningacceleratesdenovodevelopmentofantimicrobialpeptides
AT hummergerhard cellfreebiosynthesiscombinedwithdeeplearningacceleratesdenovodevelopmentofantimicrobialpeptides
AT vazquezolalla cellfreebiosynthesiscombinedwithdeeplearningacceleratesdenovodevelopmentofantimicrobialpeptides
AT erbtobiasj cellfreebiosynthesiscombinedwithdeeplearningacceleratesdenovodevelopmentofantimicrobialpeptides