Cargando…
Cell-free biosynthesis combined with deep learning accelerates de novo-development of antimicrobial peptides
Bioactive peptides are key molecules in health and medicine. Deep learning holds a big promise for the discovery and design of bioactive peptides. Yet, suitable experimental approaches are required to validate candidates in high throughput and at low cost. Here, we established a cell-free protein sy...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10632401/ https://www.ncbi.nlm.nih.gov/pubmed/37938588 http://dx.doi.org/10.1038/s41467-023-42434-9 |
_version_ | 1785132568135335936 |
---|---|
author | Pandi, Amir Adam, David Zare, Amir Trinh, Van Tuan Schaefer, Stefan L. Burt, Marie Klabunde, Björn Bobkova, Elizaveta Kushwaha, Manish Foroughijabbari, Yeganeh Braun, Peter Spahn, Christoph Preußer, Christian Pogge von Strandmann, Elke Bode, Helge B. von Buttlar, Heiner Bertrams, Wilhelm Jung, Anna Lena Abendroth, Frank Schmeck, Bernd Hummer, Gerhard Vázquez, Olalla Erb, Tobias J. |
author_facet | Pandi, Amir Adam, David Zare, Amir Trinh, Van Tuan Schaefer, Stefan L. Burt, Marie Klabunde, Björn Bobkova, Elizaveta Kushwaha, Manish Foroughijabbari, Yeganeh Braun, Peter Spahn, Christoph Preußer, Christian Pogge von Strandmann, Elke Bode, Helge B. von Buttlar, Heiner Bertrams, Wilhelm Jung, Anna Lena Abendroth, Frank Schmeck, Bernd Hummer, Gerhard Vázquez, Olalla Erb, Tobias J. |
author_sort | Pandi, Amir |
collection | PubMed |
description | Bioactive peptides are key molecules in health and medicine. Deep learning holds a big promise for the discovery and design of bioactive peptides. Yet, suitable experimental approaches are required to validate candidates in high throughput and at low cost. Here, we established a cell-free protein synthesis (CFPS) pipeline for the rapid and inexpensive production of antimicrobial peptides (AMPs) directly from DNA templates. To validate our platform, we used deep learning to design thousands of AMPs de novo. Using computational methods, we prioritized 500 candidates that we produced and screened with our CFPS pipeline. We identified 30 functional AMPs, which we characterized further through molecular dynamics simulations, antimicrobial activity and toxicity. Notably, six de novo-AMPs feature broad-spectrum activity against multidrug-resistant pathogens and do not develop bacterial resistance. Our work demonstrates the potential of CFPS for high throughput and low-cost production and testing of bioactive peptides within less than 24 h. |
format | Online Article Text |
id | pubmed-10632401 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-106324012023-11-10 Cell-free biosynthesis combined with deep learning accelerates de novo-development of antimicrobial peptides Pandi, Amir Adam, David Zare, Amir Trinh, Van Tuan Schaefer, Stefan L. Burt, Marie Klabunde, Björn Bobkova, Elizaveta Kushwaha, Manish Foroughijabbari, Yeganeh Braun, Peter Spahn, Christoph Preußer, Christian Pogge von Strandmann, Elke Bode, Helge B. von Buttlar, Heiner Bertrams, Wilhelm Jung, Anna Lena Abendroth, Frank Schmeck, Bernd Hummer, Gerhard Vázquez, Olalla Erb, Tobias J. Nat Commun Article Bioactive peptides are key molecules in health and medicine. Deep learning holds a big promise for the discovery and design of bioactive peptides. Yet, suitable experimental approaches are required to validate candidates in high throughput and at low cost. Here, we established a cell-free protein synthesis (CFPS) pipeline for the rapid and inexpensive production of antimicrobial peptides (AMPs) directly from DNA templates. To validate our platform, we used deep learning to design thousands of AMPs de novo. Using computational methods, we prioritized 500 candidates that we produced and screened with our CFPS pipeline. We identified 30 functional AMPs, which we characterized further through molecular dynamics simulations, antimicrobial activity and toxicity. Notably, six de novo-AMPs feature broad-spectrum activity against multidrug-resistant pathogens and do not develop bacterial resistance. Our work demonstrates the potential of CFPS for high throughput and low-cost production and testing of bioactive peptides within less than 24 h. Nature Publishing Group UK 2023-11-08 /pmc/articles/PMC10632401/ /pubmed/37938588 http://dx.doi.org/10.1038/s41467-023-42434-9 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Pandi, Amir Adam, David Zare, Amir Trinh, Van Tuan Schaefer, Stefan L. Burt, Marie Klabunde, Björn Bobkova, Elizaveta Kushwaha, Manish Foroughijabbari, Yeganeh Braun, Peter Spahn, Christoph Preußer, Christian Pogge von Strandmann, Elke Bode, Helge B. von Buttlar, Heiner Bertrams, Wilhelm Jung, Anna Lena Abendroth, Frank Schmeck, Bernd Hummer, Gerhard Vázquez, Olalla Erb, Tobias J. Cell-free biosynthesis combined with deep learning accelerates de novo-development of antimicrobial peptides |
title | Cell-free biosynthesis combined with deep learning accelerates de novo-development of antimicrobial peptides |
title_full | Cell-free biosynthesis combined with deep learning accelerates de novo-development of antimicrobial peptides |
title_fullStr | Cell-free biosynthesis combined with deep learning accelerates de novo-development of antimicrobial peptides |
title_full_unstemmed | Cell-free biosynthesis combined with deep learning accelerates de novo-development of antimicrobial peptides |
title_short | Cell-free biosynthesis combined with deep learning accelerates de novo-development of antimicrobial peptides |
title_sort | cell-free biosynthesis combined with deep learning accelerates de novo-development of antimicrobial peptides |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10632401/ https://www.ncbi.nlm.nih.gov/pubmed/37938588 http://dx.doi.org/10.1038/s41467-023-42434-9 |
work_keys_str_mv | AT pandiamir cellfreebiosynthesiscombinedwithdeeplearningacceleratesdenovodevelopmentofantimicrobialpeptides AT adamdavid cellfreebiosynthesiscombinedwithdeeplearningacceleratesdenovodevelopmentofantimicrobialpeptides AT zareamir cellfreebiosynthesiscombinedwithdeeplearningacceleratesdenovodevelopmentofantimicrobialpeptides AT trinhvantuan cellfreebiosynthesiscombinedwithdeeplearningacceleratesdenovodevelopmentofantimicrobialpeptides AT schaeferstefanl cellfreebiosynthesiscombinedwithdeeplearningacceleratesdenovodevelopmentofantimicrobialpeptides AT burtmarie cellfreebiosynthesiscombinedwithdeeplearningacceleratesdenovodevelopmentofantimicrobialpeptides AT klabundebjorn cellfreebiosynthesiscombinedwithdeeplearningacceleratesdenovodevelopmentofantimicrobialpeptides AT bobkovaelizaveta cellfreebiosynthesiscombinedwithdeeplearningacceleratesdenovodevelopmentofantimicrobialpeptides AT kushwahamanish cellfreebiosynthesiscombinedwithdeeplearningacceleratesdenovodevelopmentofantimicrobialpeptides AT foroughijabbariyeganeh cellfreebiosynthesiscombinedwithdeeplearningacceleratesdenovodevelopmentofantimicrobialpeptides AT braunpeter cellfreebiosynthesiscombinedwithdeeplearningacceleratesdenovodevelopmentofantimicrobialpeptides AT spahnchristoph cellfreebiosynthesiscombinedwithdeeplearningacceleratesdenovodevelopmentofantimicrobialpeptides AT preußerchristian cellfreebiosynthesiscombinedwithdeeplearningacceleratesdenovodevelopmentofantimicrobialpeptides AT poggevonstrandmannelke cellfreebiosynthesiscombinedwithdeeplearningacceleratesdenovodevelopmentofantimicrobialpeptides AT bodehelgeb cellfreebiosynthesiscombinedwithdeeplearningacceleratesdenovodevelopmentofantimicrobialpeptides AT vonbuttlarheiner cellfreebiosynthesiscombinedwithdeeplearningacceleratesdenovodevelopmentofantimicrobialpeptides AT bertramswilhelm cellfreebiosynthesiscombinedwithdeeplearningacceleratesdenovodevelopmentofantimicrobialpeptides AT jungannalena cellfreebiosynthesiscombinedwithdeeplearningacceleratesdenovodevelopmentofantimicrobialpeptides AT abendrothfrank cellfreebiosynthesiscombinedwithdeeplearningacceleratesdenovodevelopmentofantimicrobialpeptides AT schmeckbernd cellfreebiosynthesiscombinedwithdeeplearningacceleratesdenovodevelopmentofantimicrobialpeptides AT hummergerhard cellfreebiosynthesiscombinedwithdeeplearningacceleratesdenovodevelopmentofantimicrobialpeptides AT vazquezolalla cellfreebiosynthesiscombinedwithdeeplearningacceleratesdenovodevelopmentofantimicrobialpeptides AT erbtobiasj cellfreebiosynthesiscombinedwithdeeplearningacceleratesdenovodevelopmentofantimicrobialpeptides |