Cargando…
Measurement of spin–orbit torque using field counterbalancing in radial current geometry
Controlling the direction of magnetization with an electric current, rather than a magnetic field, is a powerful technique in spintronics. Spin–orbit torque, which generates an effective magnetic field from the injected current, is a promising method for this purpose. Here we show an approach for qu...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10632434/ https://www.ncbi.nlm.nih.gov/pubmed/37938612 http://dx.doi.org/10.1038/s41598-023-46658-z |
Sumario: | Controlling the direction of magnetization with an electric current, rather than a magnetic field, is a powerful technique in spintronics. Spin–orbit torque, which generates an effective magnetic field from the injected current, is a promising method for this purpose. Here we show an approach for quantifying the magnitude of spin–orbit torque from a single magnetic image. To achieve this, we deposited two concentric electrodes on top of the magnetic sample to flow a radial current. By counterbalancing the current effect with an external magnetic field, we can create a stable circular magnetization state. We measure the magnitude of spin–orbit torque from the stable radius, providing a new tool for characterizing spin–orbit torque. |
---|