Cargando…

Large deflection analysis of circular piezoelectric micro-actuator with flexoelectric effect

At micro/nano scale, the stiffening effect and flexoelectric effect of strain gradient play important roles in the electromechanical coupling response of piezoelectric micro-components. In this paper, the large deflection bending problem of circular piezoelectric micro-actuator is studied based on t...

Descripción completa

Detalles Bibliográficos
Autor principal: Ji, Xue
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10632473/
https://www.ncbi.nlm.nih.gov/pubmed/37938249
http://dx.doi.org/10.1038/s41598-023-45990-8
Descripción
Sumario:At micro/nano scale, the stiffening effect and flexoelectric effect of strain gradient play important roles in the electromechanical coupling response of piezoelectric micro-components. In this paper, the large deflection bending problem of circular piezoelectric micro-actuator is studied based on the extended linear dielectric theory. In addition to the piezoelectric effect, the flexoelectric effect, the stiffening effect of strain gradient and the high-order electric field effect of polarization gradient are introduced. According to the variational principle, a size-dependent model of circular piezoelectric micro-actuator is established to investigate its electromechanical coupling response. The contributions of piezoelectric effect and flexoelectric effect on large deflection behaviors of piezoelectric micro-actuator are revealed. It is hoped that the research results will be helpful to further understand the electromechanical coupling properties of piezoelectric micro-components and improve the control precision of piezoelectric micro-actuator.