Cargando…

replicAnt: a pipeline for generating annotated images of animals in complex environments using Unreal Engine

Deep learning-based computer vision methods are transforming animal behavioural research. Transfer learning has enabled work in non-model species, but still requires hand-annotation of example footage, and is only performant in well-defined conditions. To help overcome these limitations, we develope...

Descripción completa

Detalles Bibliográficos
Autores principales: Plum, Fabian, Bulla, René, Beck, Hendrik K., Imirzian, Natalie, Labonte, David
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10632501/
https://www.ncbi.nlm.nih.gov/pubmed/37938222
http://dx.doi.org/10.1038/s41467-023-42898-9
Descripción
Sumario:Deep learning-based computer vision methods are transforming animal behavioural research. Transfer learning has enabled work in non-model species, but still requires hand-annotation of example footage, and is only performant in well-defined conditions. To help overcome these limitations, we developed replicAnt, a configurable pipeline implemented in Unreal Engine 5 and Python, designed to generate large and variable training datasets on consumer-grade hardware. replicAnt places 3D animal models into complex, procedurally generated environments, from which automatically annotated images can be exported. We demonstrate that synthetic data generated with replicAnt can significantly reduce the hand-annotation required to achieve benchmark performance in common applications such as animal detection, tracking, pose-estimation, and semantic segmentation. We also show that it increases the subject-specificity and domain-invariance of the trained networks, thereby conferring robustness. In some applications, replicAnt may even remove the need for hand-annotation altogether. It thus represents a significant step towards porting deep learning-based computer vision tools to the field.