Cargando…
A machine learning-based algorithm to eliminate breast and axillary surgery in patients with breast cancer and pathological complete response after neoadjuvant chemotherapy
Autores principales: | de Nonneville, Alexandre, Boudin, Laurys, Houvenaeghel, Gilles, Gonçalves, Anthony, Bertucci, François |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AME Publishing Company
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10632564/ https://www.ncbi.nlm.nih.gov/pubmed/37970604 http://dx.doi.org/10.21037/atm-23-689 |
Ejemplares similares
-
Prognostic and Predictive Value of LIV1 Expression in Early Breast Cancer and by Molecular Subtype
por: de Nonneville, Alexandre, et al.
Publicado: (2023) -
CISH Expression Is Associated with Metastasis-Free Interval in Triple-Negative Breast Cancer and Refines the Prognostic Value of PDL1 Expression
por: Boudin, Laurys, et al.
Publicado: (2022) -
Association of higher axillary pathologic complete response rate with breast pathologic complete response after neoadjuvant chemotherapy
por: Zhu, Jiujun, et al.
Publicado: (2020) -
Predictive power of tertiary lymphoid structure signature for neoadjuvant chemotherapy response and immunotherapy benefit in HER2‐negative breast cancer
por: Bertucci, François, et al.
Publicado: (2023) -
Neoadjuvant Chemotherapy for Breast Cancer: Evolution of Clinical Practice in a French Cancer Center Over 16 Years and Pathologic Response Rates According to Tumor Subtypes and Clinical Tumor Size: Retrospective Cohort Study
por: Houvenaeghel, Gilles, et al.
Publicado: (2022)