Cargando…

Experimental Study on Sustainability Involving the Pugh Matrix on Emission Values of High-Temperature Air in the Premixed Charged Compression Ignition Engine

[Image: see text] The main aim of the study was to reduce carbon emissions in the atmosphere using a novel Andropogon narudus (AN) biofuel using higher air temperatures and reducing the consumption of conventional fossil fuel (diesel). The use of a heat exchange chamber within the air intake manifol...

Descripción completa

Detalles Bibliográficos
Autores principales: Joshua, Paul James Thadhani, Kandasamy, Annamalai, Venkatesan, Elumalai Perumal, Saleel, Chanduveetil Ahamed
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2023
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10633895/
https://www.ncbi.nlm.nih.gov/pubmed/37969999
http://dx.doi.org/10.1021/acsomega.3c04694
Descripción
Sumario:[Image: see text] The main aim of the study was to reduce carbon emissions in the atmosphere using a novel Andropogon narudus (AN) biofuel using higher air temperatures and reducing the consumption of conventional fossil fuel (diesel). The use of a heat exchange chamber within the air intake manifold is a popular method to reduce hydrocarbon (HC) and carbon monoxide (CO) emissions during cold starts. A premixed charged compression ignition engine in the dual-fuel mode was used in this study with raw diesel, raw AN oil, AN70+D30, AN80+D20, AN80+D20 (35 °C), AN80+D20 (40 °C), and AN80+D20 (45 °C). A chamber was designed and analyzed to measure the exit temperature and density change and to determine the reduction in volumetric efficiency of the engine, using Ansys Fluent software. A sustainability assessment study was performed to understand the feasibility of the fuel and the design using the Pugh Matrix. The fuel AN80+D20 with an air temperature of 45 °C was found to be superior to all other fuels in terms of brake thermal efficiency, reaching at 32.1%. D100 used the least amount of energy, whereas AN80+D20 used the most. Engine HC emission was at the lowest (45.01 ppm) for AN80+D20 fuel at 45 °C air input and reached the highest (50 ppm) for AN100 fuel. With an air temperature of 45 °C, CO emission was at its lowest for AN80+D20 gasoline (0.018%) and was at its highest for AN100 (0.072%). Nitrogen oxide emissions were the highest for AN80+D20 fuel with an air temperature of 45 °C, with an air concentration of 1254 ppm, whereas they were the lowest for AN100 (900 ppm). CO(2) values were reduced, with D100 showing the lowest levels and AN100 showing the highest. The smoke emission was minimum for AN80+D20 fuel at 45 °C, with a smoke number of 15 compared to 33 for D100 fuel. As per the Pugh Matrix assessment, AN80+D20 with 35 °C air temperature had higher scores compared to all of the other fuel mixtures.