Cargando…
A model-based clustering via mixture of hierarchical models with covariate adjustment for detecting differentially expressed genes from paired design
The causes of many complex human diseases are still largely unknown. Genetics plays an important role in uncovering the molecular mechanisms of complex human diseases. A key step to characterize the genetics of a complex human disease is to unbiasedly identify disease-associated gene transcripts on...
Autores principales: | Zhang, Yixin, Liu, Wei, Qiu, Weiliang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10633962/ https://www.ncbi.nlm.nih.gov/pubmed/37940858 http://dx.doi.org/10.1186/s12859-023-05556-x |
Ejemplares similares
-
Detecting disease-associated genomic outcomes using constrained mixture of Bayesian hierarchical models for paired data
por: Li, Yunfeng, et al.
Publicado: (2017) -
Detecting Differentially Variable MicroRNAs via Model-Based Clustering
por: Li, Xuan, et al.
Publicado: (2018) -
Bayesian Hierarchical Models Combining Different Study Types and Adjusting for Covariate Imbalances: A Simulation Study to Assess Model Performance
por: McCarron, C. Elizabeth, et al.
Publicado: (2011) -
A statistical method for adjusting covariates in linkage analysis with sib pairs
por: Wu, Colin O, et al.
Publicado: (2003) -
Estimation of the Covariance Matrix in Hierarchical Bayesian Spatio-Temporal Modeling via Dimension Expansion
por: Sun, Bin, et al.
Publicado: (2022)