Cargando…
Evaluating uncertainty-based active learning for accelerating the generalization of molecular property prediction
Deep learning models have proven to be a powerful tool for the prediction of molecular properties for applications including drug design and the development of energy storage materials. However, in order to learn accurate and robust structure–property mappings, these models require large amounts of...
Autores principales: | Yin, Tianzhixi, Panapitiya, Gihan, Coda, Elizabeth D., Saldanha, Emily G. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10633997/ https://www.ncbi.nlm.nih.gov/pubmed/37941055 http://dx.doi.org/10.1186/s13321-023-00753-5 |
Ejemplares similares
-
Evaluation of Deep Learning Architectures for Aqueous
Solubility Prediction
por: Panapitiya, Gihan, et al.
Publicado: (2022) -
SOMAS: a platform for data-driven material discovery in redox flow battery development
por: Gao, Peiyuan, et al.
Publicado: (2022) -
Bayesian semi-supervised learning for uncertainty-calibrated prediction of molecular properties and active learning
por: Zhang, Yao, et al.
Publicado: (2019) -
Explainable uncertainty quantifications for deep learning-based molecular property prediction
por: Yang, Chu-I, et al.
Publicado: (2023) -
Uncertainty Prediction for Machine Learning Models
of Material Properties
por: Tavazza, Francesca, et al.
Publicado: (2021)