Cargando…
Metabolomics and machine learning approaches for diagnostic and prognostic biomarkers screening in sepsis
BACKGROUND: Sepsis is a life-threatening disease with a poor prognosis, and metabolic disorders play a crucial role in its development. This study aims to identify key metabolites that may be associated with the accurate diagnosis and prognosis of sepsis. METHODS: Septic patients and healthy individ...
Autores principales: | She, Han, Du, Yuanlin, Du, Yunxia, Tan, Lei, Yang, Shunxin, Luo, Xi, Li, Qinghui, Xiang, Xinming, Lu, Haibin, Hu, Yi, Liu, Liangming, Li, Tao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10634148/ https://www.ncbi.nlm.nih.gov/pubmed/37946144 http://dx.doi.org/10.1186/s12871-023-02317-4 |
Ejemplares similares
-
Identification of featured necroptosis-related genes and imbalanced immune infiltration in sepsis via machine learning
por: She, Han, et al.
Publicado: (2023) -
Integrative single-cell RNA sequencing and metabolomics decipher the imbalanced lipid-metabolism in maladaptive immune responses during sepsis
por: She, Han, et al.
Publicado: (2023) -
VDAC2 malonylation participates in sepsis-induced myocardial dysfunction via mitochondrial-related ferroptosis
por: She, Han, et al.
Publicado: (2023) -
The Landscape of Featured Metabolism-Related Genes and Imbalanced Immune Cell Subsets in Sepsis
por: She, Han, et al.
Publicado: (2022) -
Diagnostic and prognostic capabilities of a biomarker and EMR‐based machine learning algorithm for sepsis
por: Taneja, Ishan, et al.
Publicado: (2021)