Cargando…

Changes in Phenolic Profile and Total Phenol and Total Flavonoid Contents of Guadua angustifolia Kunth Plants under Organic and Conventional Fertilization

[Image: see text] Agronomic management of a crop, including the application of fertilizers and biological inoculants, affects the phenol and flavonoid contents of plants producing these metabolites. Guadua angustifolia Kunth, a woody bamboo widely distributed in the Americas, produces several biolog...

Descripción completa

Detalles Bibliográficos
Autores principales: Villamarin-Raad, David A., Lozano-Puentes, Hair S., Chitiva, Luis Carlos, Costa, Geison M., Díaz-Gallo, Sergio A., Díaz-Ariza, Lucía A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2023
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10634197/
https://www.ncbi.nlm.nih.gov/pubmed/37970062
http://dx.doi.org/10.1021/acsomega.3c04579
Descripción
Sumario:[Image: see text] Agronomic management of a crop, including the application of fertilizers and biological inoculants, affects the phenol and flavonoid contents of plants producing these metabolites. Guadua angustifolia Kunth, a woody bamboo widely distributed in the Americas, produces several biologically active phenolic compounds. The aim of this study was to evaluate the effect of chemical and organic fertilizers together with the application of biological inoculants on the composition of phenolic compounds in G. angustifolia plants at the nursery stage. In 8-month-old plants, differences were observed in plant biomass (20.27 ± 7.68 g) and in the content of total phenols and flavonoids (21.89 ± 9.64 mg gallic acid equivalents/plant and 2.13 ± 0.98 mg quercetin equivalents/plant, respectively) when using the chemical fertilizer diammonium phosphate (DAP). No significant differences were found owing to the effect of the inoculants, although the plants with the application of Stenotrophomonas sp. on plants fertilized with DAP presented higher values of the metabolites (24.12 ± 6.72 mg gallic acid equivalents/plant and 2.39 ± 0.77 mg quercetin equivalents/plant). The chromatographic profile of phenolic metabolites is dominated by one glycosylated flavonoid, the concentration of which was favored by the application of the inoculants Azospirillum brasilense, Pseudomonas fluorescens, and Stenotrophomonas sp. In the case study, the combined use of DAP and bacterial inoculants is recommended for the production of G. angustifolia plant material with a high content of promising biologically active flavonoids or phenolics.