Cargando…
Expanding Training Data for Structure-Based Receptor–Ligand Binding Affinity Regression through Imputation of Missing Labels
[Image: see text] The success of machine learning is, in part, due to a large volume of data available to train models. However, the amount of training data for structure-based molecular property prediction remains limited. The previously described CrossDocked2020 data set expanded the available tra...
Autores principales: | Francoeur, Paul G., Koes, David R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10634251/ https://www.ncbi.nlm.nih.gov/pubmed/37970017 http://dx.doi.org/10.1021/acsomega.3c05931 |
Ejemplares similares
-
Shrinkage regression-based methods for microarray missing value imputation
por: Wang, Hsiuying, et al.
Publicado: (2013) -
Flexible imputation of missing data
por: van Buuren, Stef
Publicado: (2018) -
Missing Data and Imputation Methods
por: Schober, Patrick, et al.
Publicado: (2020) -
Self–Training With Quantile Errors for Multivariate Missing Data Imputation for Regression Problems in Electronic Medical Records: Algorithm Development Study
por: Gwon, Hansle, et al.
Publicado: (2021) -
Imputation of missing genotypes: an empirical evaluation of IMPUTE
por: Zhao, Zhenming, et al.
Publicado: (2008)