Cargando…
Advances in Mesenchymal stem cells regulating macrophage polarization and treatment of sepsis-induced liver injury
Sepsis is a syndrome of dysregulated host response caused by infection, which leads to life-threatening organ dysfunction. It is a familiar reason of death in critically ill patients. Liver injury frequently occurs in septic patients, yet the development of targeted and effective treatment strategie...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10634316/ https://www.ncbi.nlm.nih.gov/pubmed/37954578 http://dx.doi.org/10.3389/fimmu.2023.1238972 |
Sumario: | Sepsis is a syndrome of dysregulated host response caused by infection, which leads to life-threatening organ dysfunction. It is a familiar reason of death in critically ill patients. Liver injury frequently occurs in septic patients, yet the development of targeted and effective treatment strategies remains a pressing challenge. Macrophages are essential parts of immunity system. M1 macrophages drive inflammation, whereas M2 macrophages possess anti-inflammatory properties and contribute to tissue repair processes. Mesenchymal stem cells (MSCs), known for their remarkable attributes including homing capabilities, immunomodulation, anti-inflammatory effects, and tissue regeneration potential, hold promise in enhancing the prognosis of sepsis-induced liver injury by harmonizing the delicate balance of M1/M2 macrophage polarization. This review discusses the mechanisms by which MSCs regulate macrophage polarization, alongside the signaling pathways involved, providing an idea for innovative directions in the treatment of sepsis-induced liver injury. |
---|