Cargando…

Reciprocal regulation of NagC and quorum sensing systems and their roles in hmsHFRS expression and biofilm formation in Yersinia pseudotuberculosis

Biofilm formation by Yersinia pseudotuberculosis is regulated by quorum sensing (QS) and dependent on the haemin storage locus hms, required for the extracellular polysaccharide poly-N-acetylglucosamine (poly-GlcNAc) production. In Escherichia coli NagC regulates both GlcNAc biosynthesis and metabol...

Descripción completa

Detalles Bibliográficos
Autores principales: Wiechmann, Anja, Garcia, Vanina, Elton, Linzy, Williams, Paul, Atkinson, Steve
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Microbiology Society 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10634360/
https://www.ncbi.nlm.nih.gov/pubmed/37815525
http://dx.doi.org/10.1099/mic.0.001397
Descripción
Sumario:Biofilm formation by Yersinia pseudotuberculosis is regulated by quorum sensing (QS) and dependent on the haemin storage locus hms, required for the extracellular polysaccharide poly-N-acetylglucosamine (poly-GlcNAc) production. In Escherichia coli NagC regulates both GlcNAc biosynthesis and metabolism with GlcNAc acting as a signal that co-ordinates these and other activities. However, the contribution of NagC and GlcNAc to biofilm development in Y. pseudotuberculosis is not known. Here we show that a Y. pseudotuberculosis nagC mutant is impaired for biofilm production on abiotic (glass) and biotic (Caenorhabitis elegans) surfaces. Genetic complementation restored poly-GlcNAc production and biofilm formation on C. elegans. Using lux-based promoter fusions, hmsHFRS expression was found to be nagC dependent. Given that NagC and QS both regulate aggregation and biofilm formation, we investigated their regulatory relationship using lux-based promoter fusions. These revealed that (i) nagC is negatively autoregulated, but expression can be partially restored in the nagC mutant by exogenous GlcNAc, (ii) NagC negatively regulates the ytbI and ypsI QS genes and (iii) nagC expression is reduced in the ytbI, ypsI and ypsR mutants but not the ytbR mutant. These data establish the existence of a reciprocal regulatory relationship between NagC and QS, which in the case of the luxRI pair ytbRI, is also GlcNAc-dependent. NagC and GlcNAc are therefore components of a regulatory system involving QS that modulates biofilm formation and aggregation.