Cargando…
Genetic variants linked to the phenotypic outcome of invasive disease and carriage of Neisseria meningitidis
Neisseria meningitidis can be a human commensal in the upper respiratory tract but is also capable of causing invasive diseases such as meningococcal meningitis and septicaemia. No specific genetic markers have been detected to distinguish carriage from disease isolates. The aim here was to find gen...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Microbiology Society
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10634450/ https://www.ncbi.nlm.nih.gov/pubmed/37874326 http://dx.doi.org/10.1099/mgen.0.001124 |
_version_ | 1785146212947591168 |
---|---|
author | Eriksson, Lorraine Johannesen, Thor Bech Stenmark, Bianca Jacobsson, Susanne Säll, Olof Hedberg, Sara Thulin Fredlund, Hans Stegger, Marc Mölling, Paula |
author_facet | Eriksson, Lorraine Johannesen, Thor Bech Stenmark, Bianca Jacobsson, Susanne Säll, Olof Hedberg, Sara Thulin Fredlund, Hans Stegger, Marc Mölling, Paula |
author_sort | Eriksson, Lorraine |
collection | PubMed |
description | Neisseria meningitidis can be a human commensal in the upper respiratory tract but is also capable of causing invasive diseases such as meningococcal meningitis and septicaemia. No specific genetic markers have been detected to distinguish carriage from disease isolates. The aim here was to find genetic traits that could be linked to phenotypic outcomes associated with carriage versus invasive N. meningitidis disease through a bacterial genome-wide association study (GWAS). In this study, invasive N. meningitidis isolates collected in Sweden (n=103) and carriage isolates collected at Örebro University, Sweden (n=213) 2018–2019 were analysed. The GWAS analysis, treeWAS, was applied to single-nucleotide polymorphisms (SNPs), genes and k-mers. One gene and one non-synonymous SNP were associated with invasive disease and seven genes and one non-synonymous SNP were associated with carriage isolates. The gene associated with invasive disease encodes a phage transposase (NEIS1048), and the associated invasive SNP glmU S373C encodes the enzyme N-acetylglucosamine 1-phosphate (GlcNAC 1-P) uridyltransferase. Of the genes associated with carriage isolates, a gene variant of porB encoding PorB class 3, the genes pilE/pilS and tspB have known functions. The SNP associated with carriage was fkbp D33N, encoding a FK506-binding protein (FKBP). K-mers from PilS, tbpB and tspB were found to be associated with carriage, while k-mers from mtrD and tbpA were associated with invasiveness. In the genes fkbp, glmU, PilC and pilE, k-mers were found that were associated with both carriage and invasive isolates, indicating that specific variations within these genes could play a role in invasiveness. The data presented here highlight genetic traits that are significantly associated with invasive or carriage N. meningitidis across the species population. These traits could prove essential to our understanding of the pathogenicity of N. meningitidis and could help to identify future vaccine targets. |
format | Online Article Text |
id | pubmed-10634450 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Microbiology Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-106344502023-11-15 Genetic variants linked to the phenotypic outcome of invasive disease and carriage of Neisseria meningitidis Eriksson, Lorraine Johannesen, Thor Bech Stenmark, Bianca Jacobsson, Susanne Säll, Olof Hedberg, Sara Thulin Fredlund, Hans Stegger, Marc Mölling, Paula Microb Genom Research Articles Neisseria meningitidis can be a human commensal in the upper respiratory tract but is also capable of causing invasive diseases such as meningococcal meningitis and septicaemia. No specific genetic markers have been detected to distinguish carriage from disease isolates. The aim here was to find genetic traits that could be linked to phenotypic outcomes associated with carriage versus invasive N. meningitidis disease through a bacterial genome-wide association study (GWAS). In this study, invasive N. meningitidis isolates collected in Sweden (n=103) and carriage isolates collected at Örebro University, Sweden (n=213) 2018–2019 were analysed. The GWAS analysis, treeWAS, was applied to single-nucleotide polymorphisms (SNPs), genes and k-mers. One gene and one non-synonymous SNP were associated with invasive disease and seven genes and one non-synonymous SNP were associated with carriage isolates. The gene associated with invasive disease encodes a phage transposase (NEIS1048), and the associated invasive SNP glmU S373C encodes the enzyme N-acetylglucosamine 1-phosphate (GlcNAC 1-P) uridyltransferase. Of the genes associated with carriage isolates, a gene variant of porB encoding PorB class 3, the genes pilE/pilS and tspB have known functions. The SNP associated with carriage was fkbp D33N, encoding a FK506-binding protein (FKBP). K-mers from PilS, tbpB and tspB were found to be associated with carriage, while k-mers from mtrD and tbpA were associated with invasiveness. In the genes fkbp, glmU, PilC and pilE, k-mers were found that were associated with both carriage and invasive isolates, indicating that specific variations within these genes could play a role in invasiveness. The data presented here highlight genetic traits that are significantly associated with invasive or carriage N. meningitidis across the species population. These traits could prove essential to our understanding of the pathogenicity of N. meningitidis and could help to identify future vaccine targets. Microbiology Society 2023-10-24 /pmc/articles/PMC10634450/ /pubmed/37874326 http://dx.doi.org/10.1099/mgen.0.001124 Text en © 2023 The Authors https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License. |
spellingShingle | Research Articles Eriksson, Lorraine Johannesen, Thor Bech Stenmark, Bianca Jacobsson, Susanne Säll, Olof Hedberg, Sara Thulin Fredlund, Hans Stegger, Marc Mölling, Paula Genetic variants linked to the phenotypic outcome of invasive disease and carriage of Neisseria meningitidis |
title | Genetic variants linked to the phenotypic outcome of invasive disease and carriage of Neisseria meningitidis
|
title_full | Genetic variants linked to the phenotypic outcome of invasive disease and carriage of Neisseria meningitidis
|
title_fullStr | Genetic variants linked to the phenotypic outcome of invasive disease and carriage of Neisseria meningitidis
|
title_full_unstemmed | Genetic variants linked to the phenotypic outcome of invasive disease and carriage of Neisseria meningitidis
|
title_short | Genetic variants linked to the phenotypic outcome of invasive disease and carriage of Neisseria meningitidis
|
title_sort | genetic variants linked to the phenotypic outcome of invasive disease and carriage of neisseria meningitidis |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10634450/ https://www.ncbi.nlm.nih.gov/pubmed/37874326 http://dx.doi.org/10.1099/mgen.0.001124 |
work_keys_str_mv | AT erikssonlorraine geneticvariantslinkedtothephenotypicoutcomeofinvasivediseaseandcarriageofneisseriameningitidis AT johannesenthorbech geneticvariantslinkedtothephenotypicoutcomeofinvasivediseaseandcarriageofneisseriameningitidis AT stenmarkbianca geneticvariantslinkedtothephenotypicoutcomeofinvasivediseaseandcarriageofneisseriameningitidis AT jacobssonsusanne geneticvariantslinkedtothephenotypicoutcomeofinvasivediseaseandcarriageofneisseriameningitidis AT sallolof geneticvariantslinkedtothephenotypicoutcomeofinvasivediseaseandcarriageofneisseriameningitidis AT hedbergsarathulin geneticvariantslinkedtothephenotypicoutcomeofinvasivediseaseandcarriageofneisseriameningitidis AT fredlundhans geneticvariantslinkedtothephenotypicoutcomeofinvasivediseaseandcarriageofneisseriameningitidis AT steggermarc geneticvariantslinkedtothephenotypicoutcomeofinvasivediseaseandcarriageofneisseriameningitidis AT mollingpaula geneticvariantslinkedtothephenotypicoutcomeofinvasivediseaseandcarriageofneisseriameningitidis |