Cargando…
Visual impairment cell non-autonomously dysregulates brain-wide proteostasis
Loss of hearing or vision has been identified as a significant risk factor for dementia but underlying molecular mechanisms are unknown. In different Drosophila models of blindness, we observe non-autonomous induction of stress granules in the brain and their reversal upon restoration of vision. Str...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10634672/ https://www.ncbi.nlm.nih.gov/pubmed/37961457 http://dx.doi.org/10.1101/2023.10.19.563166 |
_version_ | 1785146223194275840 |
---|---|
author | Shekhar, Shashank Wert, Katherine J Krämer, Helmut |
author_facet | Shekhar, Shashank Wert, Katherine J Krämer, Helmut |
author_sort | Shekhar, Shashank |
collection | PubMed |
description | Loss of hearing or vision has been identified as a significant risk factor for dementia but underlying molecular mechanisms are unknown. In different Drosophila models of blindness, we observe non-autonomous induction of stress granules in the brain and their reversal upon restoration of vision. Stress granules include cytosolic condensates of p62, ATF4 and XRP1. This cytosolic restraint of the ATF4 and XRP1 transcription factors dampens expression of their downstream targets during cellular stress. Cytosolic condensates of p62 and ATF4 were also evident in the thalamus and hippocampus of mouse models of congenital or degenerative blindness. These data indicate conservation of the link between loss of sensory input and dysregulation of stress responses critical for protein quality control in the brain. |
format | Online Article Text |
id | pubmed-10634672 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Cold Spring Harbor Laboratory |
record_format | MEDLINE/PubMed |
spelling | pubmed-106346722023-11-13 Visual impairment cell non-autonomously dysregulates brain-wide proteostasis Shekhar, Shashank Wert, Katherine J Krämer, Helmut bioRxiv Article Loss of hearing or vision has been identified as a significant risk factor for dementia but underlying molecular mechanisms are unknown. In different Drosophila models of blindness, we observe non-autonomous induction of stress granules in the brain and their reversal upon restoration of vision. Stress granules include cytosolic condensates of p62, ATF4 and XRP1. This cytosolic restraint of the ATF4 and XRP1 transcription factors dampens expression of their downstream targets during cellular stress. Cytosolic condensates of p62 and ATF4 were also evident in the thalamus and hippocampus of mouse models of congenital or degenerative blindness. These data indicate conservation of the link between loss of sensory input and dysregulation of stress responses critical for protein quality control in the brain. Cold Spring Harbor Laboratory 2023-10-23 /pmc/articles/PMC10634672/ /pubmed/37961457 http://dx.doi.org/10.1101/2023.10.19.563166 Text en https://creativecommons.org/licenses/by/4.0/This work is licensed under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/) , which allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use. |
spellingShingle | Article Shekhar, Shashank Wert, Katherine J Krämer, Helmut Visual impairment cell non-autonomously dysregulates brain-wide proteostasis |
title | Visual impairment cell non-autonomously dysregulates brain-wide proteostasis |
title_full | Visual impairment cell non-autonomously dysregulates brain-wide proteostasis |
title_fullStr | Visual impairment cell non-autonomously dysregulates brain-wide proteostasis |
title_full_unstemmed | Visual impairment cell non-autonomously dysregulates brain-wide proteostasis |
title_short | Visual impairment cell non-autonomously dysregulates brain-wide proteostasis |
title_sort | visual impairment cell non-autonomously dysregulates brain-wide proteostasis |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10634672/ https://www.ncbi.nlm.nih.gov/pubmed/37961457 http://dx.doi.org/10.1101/2023.10.19.563166 |
work_keys_str_mv | AT shekharshashank visualimpairmentcellnonautonomouslydysregulatesbrainwideproteostasis AT wertkatherinej visualimpairmentcellnonautonomouslydysregulatesbrainwideproteostasis AT kramerhelmut visualimpairmentcellnonautonomouslydysregulatesbrainwideproteostasis |