Cargando…

Exploring the Roles of RNAs in Chromatin Architecture Using Deep Learning

Recent studies have highlighted the impact of both transcription and transcripts on 3D genome organization, particularly its dynamics. Here, we propose a deep learning framework, called AkitaR, that leverages both genome sequences and genome-wide RNA-DNA interactions to investigate the roles of chro...

Descripción completa

Detalles Bibliográficos
Autores principales: Kuang, Shuzhen, Pollard, Katherine S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10634726/
https://www.ncbi.nlm.nih.gov/pubmed/37961712
http://dx.doi.org/10.1101/2023.10.22.563498
Descripción
Sumario:Recent studies have highlighted the impact of both transcription and transcripts on 3D genome organization, particularly its dynamics. Here, we propose a deep learning framework, called AkitaR, that leverages both genome sequences and genome-wide RNA-DNA interactions to investigate the roles of chromatin-associated RNAs (caRNAs) on genome folding in HFFc6 cells. In order to disentangle the cis- and trans-regulatory roles of caRNAs, we compared models with nascent transcripts, trans-located caRNAs, open chromatin data, or DNA sequence alone. Both nascent transcripts and trans-located caRNAs improved the models’ predictions, especially at cell-type-specific genomic regions. Analyses of feature importance scores revealed the contribution of caRNAs at TAD boundaries, chromatin loops and nuclear sub-structures such as nuclear speckles and nucleoli to the models’ predictions. Furthermore, we identified non-coding RNAs (ncRNAs) known to regulate chromatin structures, such as MALAT1 and NEAT1, as well as several novel RNAs, RNY5, RPPH1, POLG-DT and THBS1-IT, that might modulate chromatin architecture through trans-interactions in HFFc6. Our modeling also suggests that transcripts from Alus and other repetitive elements may facilitate chromatin interactions through trans R-loop formation. Our findings provide new insights and generate testable hypotheses about the roles of caRNAs in shaping chromatin organization.