Cargando…

Inducible degradation-coupled phosphoproteomics identifies PP2A(Rts1) as a novel eisosome regulator

Reversible protein phosphorylation is an abundant post-translational modification dynamically regulated by opposing kinases and phosphatases. Protein phosphorylation has been extensively studied in cell division, where waves of cyclin-dependent kinase activity, peaking in mitosis, drive the sequenti...

Descripción completa

Detalles Bibliográficos
Autores principales: DeMarco, Andrew G., Dibble, Marcella G., Hall, Mark C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10634780/
https://www.ncbi.nlm.nih.gov/pubmed/37961087
http://dx.doi.org/10.1101/2023.10.24.563668
_version_ 1785146239435669504
author DeMarco, Andrew G.
Dibble, Marcella G.
Hall, Mark C.
author_facet DeMarco, Andrew G.
Dibble, Marcella G.
Hall, Mark C.
author_sort DeMarco, Andrew G.
collection PubMed
description Reversible protein phosphorylation is an abundant post-translational modification dynamically regulated by opposing kinases and phosphatases. Protein phosphorylation has been extensively studied in cell division, where waves of cyclin-dependent kinase activity, peaking in mitosis, drive the sequential stages of the cell cycle. Here we developed and employed a strategy to specifically probe kinase or phosphatase substrates at desired times or experimental conditions in the model organism Saccharomyces cerevisiae. We combined auxin-inducible degradation (AID) with mass spectrometry-based phosphoproteomics, which allowed us to arrest physiologically normal cultures in mitosis prior to rapid phosphatase degradation and phosphoproteome analysis. Our results revealed that protein phosphatase 2A coupled with its B56 regulatory subunit, Rts1 (PP2A(Rts1)), is involved in dephosphorylation of numerous proteins in mitosis, highlighting the need for phosphatases to selectively maintain certain proteins in a hypophosphorylated state in the face of high mitotic kinase activity. Unexpectedly, we observed elevated phosphorylation at many sites on several subunits of the fungal eisosome complex following rapid Rts1 degradation. Eisosomes are dynamic polymeric assemblies that create furrows in the plasma membrane important in regulating nutrient import, lipid metabolism, and stress responses, among other things. We found that PP2A(Rts1)-mediated dephosphorylation of eisosomes promotes their plasma membrane association and we provide evidence that this regulation impacts eisosome roles in metabolic homeostasis. The combination of rapid, inducible protein degradation with proteomic profiling offers several advantages over common protein disruption methods for characterizing substrates of regulatory enzymes involved in dynamic biological processes.
format Online
Article
Text
id pubmed-10634780
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Cold Spring Harbor Laboratory
record_format MEDLINE/PubMed
spelling pubmed-106347802023-11-13 Inducible degradation-coupled phosphoproteomics identifies PP2A(Rts1) as a novel eisosome regulator DeMarco, Andrew G. Dibble, Marcella G. Hall, Mark C. bioRxiv Article Reversible protein phosphorylation is an abundant post-translational modification dynamically regulated by opposing kinases and phosphatases. Protein phosphorylation has been extensively studied in cell division, where waves of cyclin-dependent kinase activity, peaking in mitosis, drive the sequential stages of the cell cycle. Here we developed and employed a strategy to specifically probe kinase or phosphatase substrates at desired times or experimental conditions in the model organism Saccharomyces cerevisiae. We combined auxin-inducible degradation (AID) with mass spectrometry-based phosphoproteomics, which allowed us to arrest physiologically normal cultures in mitosis prior to rapid phosphatase degradation and phosphoproteome analysis. Our results revealed that protein phosphatase 2A coupled with its B56 regulatory subunit, Rts1 (PP2A(Rts1)), is involved in dephosphorylation of numerous proteins in mitosis, highlighting the need for phosphatases to selectively maintain certain proteins in a hypophosphorylated state in the face of high mitotic kinase activity. Unexpectedly, we observed elevated phosphorylation at many sites on several subunits of the fungal eisosome complex following rapid Rts1 degradation. Eisosomes are dynamic polymeric assemblies that create furrows in the plasma membrane important in regulating nutrient import, lipid metabolism, and stress responses, among other things. We found that PP2A(Rts1)-mediated dephosphorylation of eisosomes promotes their plasma membrane association and we provide evidence that this regulation impacts eisosome roles in metabolic homeostasis. The combination of rapid, inducible protein degradation with proteomic profiling offers several advantages over common protein disruption methods for characterizing substrates of regulatory enzymes involved in dynamic biological processes. Cold Spring Harbor Laboratory 2023-10-24 /pmc/articles/PMC10634780/ /pubmed/37961087 http://dx.doi.org/10.1101/2023.10.24.563668 Text en https://creativecommons.org/licenses/by-nc/4.0/This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (https://creativecommons.org/licenses/by-nc/4.0/) , which allows reusers to distribute, remix, adapt, and build upon the material in any medium or format for noncommercial purposes only, and only so long as attribution is given to the creator.
spellingShingle Article
DeMarco, Andrew G.
Dibble, Marcella G.
Hall, Mark C.
Inducible degradation-coupled phosphoproteomics identifies PP2A(Rts1) as a novel eisosome regulator
title Inducible degradation-coupled phosphoproteomics identifies PP2A(Rts1) as a novel eisosome regulator
title_full Inducible degradation-coupled phosphoproteomics identifies PP2A(Rts1) as a novel eisosome regulator
title_fullStr Inducible degradation-coupled phosphoproteomics identifies PP2A(Rts1) as a novel eisosome regulator
title_full_unstemmed Inducible degradation-coupled phosphoproteomics identifies PP2A(Rts1) as a novel eisosome regulator
title_short Inducible degradation-coupled phosphoproteomics identifies PP2A(Rts1) as a novel eisosome regulator
title_sort inducible degradation-coupled phosphoproteomics identifies pp2a(rts1) as a novel eisosome regulator
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10634780/
https://www.ncbi.nlm.nih.gov/pubmed/37961087
http://dx.doi.org/10.1101/2023.10.24.563668
work_keys_str_mv AT demarcoandrewg inducibledegradationcoupledphosphoproteomicsidentifiespp2arts1asanoveleisosomeregulator
AT dibblemarcellag inducibledegradationcoupledphosphoproteomicsidentifiespp2arts1asanoveleisosomeregulator
AT hallmarkc inducibledegradationcoupledphosphoproteomicsidentifiespp2arts1asanoveleisosomeregulator