Cargando…
Forecasting dominance of SARS-CoV-2 lineages by anomaly detection using deep AutoEncoders
The COVID-19 pandemic exemplified the need for a rapid, effective genomic-based surveillance system to predict emerging SARS-CoV-2 variants and lineages. Traditional molecular epidemiology methods, which leverage public health surveillance or integrated sequence data repositories, are able to charac...
Autores principales: | Rancati, Simone, Nicora, Giovanna, Prosperi, Mattia, Bellazzi, Riccardo, Marini, Simone, Salemi, Marco |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10634784/ https://www.ncbi.nlm.nih.gov/pubmed/37961168 http://dx.doi.org/10.1101/2023.10.24.563721 |
Ejemplares similares
-
Predicting emerging SARS-CoV-2 variants of concern through a One Class dynamic anomaly detection algorithm
por: Nicora, Giovanna, et al.
Publicado: (2022) -
Video Anomaly Detection Based on Convolutional Recurrent AutoEncoder
por: Wang, Bokun, et al.
Publicado: (2022) -
Quantum Variational AutoEncoder
por: Vinci, Walter
Publicado: (2018) -
Road-Type Classification with Deep AutoEncoder
por: Molefe, Mohale E., et al.
Publicado: (2023) -
An AutoEncoder-based Anomaly Detection tool with a per-LS granularity
por: CMS Collaboration
Publicado: (2023)