Cargando…
The MuSK-BMP pathway regulates synaptic Nav1.4 localization and muscle excitability
The neuromuscular junction (NMJ) is the linchpin of nerve-evoked muscle contraction. Broadly considered, the function of the NMJ is to transduce a nerve action potential into a muscle fiber action potential (MFAP). Efficient information transfer requires both cholinergic signaling, responsible for t...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10634800/ https://www.ncbi.nlm.nih.gov/pubmed/37961580 http://dx.doi.org/10.1101/2023.10.24.563837 |
Sumario: | The neuromuscular junction (NMJ) is the linchpin of nerve-evoked muscle contraction. Broadly considered, the function of the NMJ is to transduce a nerve action potential into a muscle fiber action potential (MFAP). Efficient information transfer requires both cholinergic signaling, responsible for the generation of endplate potentials (EPPs), and excitation, the activation of postsynaptic voltage-gated sodium channels (Nav1.4) to trigger MFAPs. In contrast to the cholinergic apparatus, the signaling pathways that organize Nav1.4 and muscle fiber excitability are poorly characterized. Muscle-specific kinase (MuSK), in addition to its Ig1 domain-dependent role as an agrin-LRP4 receptor, is also a BMP co-receptor that binds BMPs via its Ig3 domain and shapes BMP-induced signaling and transcriptional output. Here we probed the function of the MuSK-BMP pathway at the NMJ using mice lacking the MuSK Ig3 domain (‘ΔIg3-MuSK’). Synapses formed normally in ΔIg3-MuSK animals, but the postsynaptic apparatus was fragmented from the first weeks of life. Anatomical denervation was not observed at any age examined. Moreover, spontaneous and nerve-evoked acetylcholine release, AChR density, and endplate currents were comparable to WT. However, trains of nerve-evoked MFAPs in ΔIg3-MuSK muscle were abnormal as revealed by increased jitter and blocking in single fiber electromyography. Further, nerve-evoked compound muscle action potentials (CMAPs), as well as twitch and tetanic muscle torque force production, were also diminished. Finally, Nav1.4 levels were reduced at ΔIg3-MuSK synapses but not at the extrajunctional sarcolemma, indicating that the observed excitability defects are the result of impaired localization of this voltage-gated ion channel at the NMJ. We propose that MuSK plays two distinct roles at the NMJ: as an agrin-LRP4 receptor necessary for establishing and maintaining cholinergic signaling, and as a BMP co-receptor required for maintaining proper Nav1.4 density, nerve-evoked muscle excitability and force production. The MuSK-BMP pathway thus emerges as a target for modulating excitability and functional innervation, which are defective in conditions such as congenital myasthenic syndromes and aging. |
---|